Synthesis and in vitro evaluation of novel non-oximes for the reactivation of nerve agent inhibited human acetylcholinesterase. 2020

Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
TNO, Lange Kleiweg 137, 2288, GJ Rijswijk, the Netherlands. Electronic address: m.dekoning@tno.nl.

Since several decades oximes have been used as part of treatment of nerve agent intoxication with the aim to restore the biological function of the enzyme acetylcholinesterase after its covalent inhibition by organophosphorus compounds such as pesticides and nerve agents. Recent findings have illustrated that, besides oximes, certain Mannich phenols can reactivate the inhibited enzyme very effectively, and may therefore represent an attractive complementary class of reactivators. In this paper we further probe the effect of structural variation on the in vitro efficacy of Mannich phenol based reactivators. Thus, we present the synthesis of 14 compounds that are close variants of the previously reported 4-amino-2-(1-pyrrolidinylmethyl)-phenol, a very effective non-oxime reactivator, and 3 dimeric Mannich phenols. All compounds were assessed for their ability to reactivate human acetylcholinesterase inhibited by the nerve agents VX, tabun, sarin, cyclosarin and paraoxon in vitro. It was confirmed that the potency of the compounds is highly sensitive to small structural changes, leading to diminished reactivation potency in many cases. However, the presence of 4-substituted alkylamine substituents (as exemplified with the 4-benzylamine-variant) was tolerated. More surprisingly, the dimeric compounds demonstrated non-typical behavior and displayed some reactivation potency as well. Both findings may open up new avenues for designing more effective non-oxime reactivators.

UI MeSH Term Description Entries
D010091 Oximes Compounds that contain the radical R2C Aldoximes,Hydroxyimino Compounds,Ketoxime,Ketoximes,Oxime,Compounds, Hydroxyimino
D002619 Chemical Warfare Agents Chemicals that are used to cause the disturbance, disease, or death of humans during WARFARE. Agents, Chemical Warfare,Warfare Agents, Chemical,Agent, Chemical Warfare,Chemical Warfare Agent,Warfare Agent, Chemical
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D002801 Cholinesterase Reactivators Drugs used to reverse the inactivation of cholinesterase caused by organophosphates or sulfonates. They are an important component of therapy in agricultural, industrial, and military poisonings by organophosphates and sulfonates. Insecticides, Organophosphate, Antagonists,Insecticides, Organothiophosphate, Antagonists,Organophosphate Insecticide Antagonists,Organothiophosphate Insecticide Antagonists,Antagonists, Organophosphate Insecticide,Antagonists, Organothiophosphate Insecticide,Insecticide Antagonists, Organophosphate,Insecticide Antagonists, Organothiophosphate,Reactivators, Cholinesterase
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067397 Nerve Agents A class of compounds that adversely affect the transmission of impulses through the NERVOUS SYSTEM. Nerve Agent,Nerve Gas,Agent, Nerve,Agents, Nerve,Gas, Nerve
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
December 2011, Toxicology in vitro : an international journal published in association with BIBRA,
Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
September 2012, Archives of toxicology,
Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
April 2004, Human & experimental toxicology,
Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
December 2009, Molecules (Basel, Switzerland),
Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
November 2010, Biochemical pharmacology,
Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
January 2022, Medicinal chemistry (Shariqah (United Arab Emirates)),
Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
October 2007, Biochemistry,
Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
November 2022, Archiv der Pharmazie,
Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
May 2021, Communications biology,
Martijn C de Koning, and Gabriele Horn, and Franz Worek, and Marco van Grol
January 2011, Bioorganic & medicinal chemistry,
Copied contents to your clipboard!