Corticosteroid regulation of Na+ and K+ transport in the rat distal colon during postnatal development. 1988

J Pácha, and M Popp, and K Capek
Czechoslovak Academy of Sciences, Institute of Physiology, Videnska.

To study the role of corticosteroids in the regulation of colonic electrogenic amiloride-sensitive Na+ absorption (ISCNa) and barium-sensitive K+ secretion (ISCK) during development, we investigated suckling (10-day old), weanling (25-day old) and adult (90-day old) adrenalectomized rats after they had received aldosterone, dexamethasone or corticosterone. Adrenalectomy reduced markedly ISCNa in suckling rats and completely inhibited ISCNa in weanling animals; the ISCNa was absent in intact adult rats. The doses of aldosterone, corticosterone and dexamethasone estimated to be equivalent to the endogenous production rate of aldosterone and corticosterone restored ISCNa after 1 day in both suckling and weanling rats. Compared with aldosterone, glucocorticoids produced a greater increase in ISCNa. Concurrent spironolactone treatment (a mineralocorticoid antagonist) completely prevented the effect of aldosterone but had no effect in dexamethasone-treated rats. The glucocorticoid antagonist RU 38 486 inhibited the dexamethasone-induction of ISCNa but had no effect on aldosterone. The response to corticosteroids, measured as the increase of ISCNa, declined from suckling to adult rats. In contrast to ISCNa, the same time of treatment and the same doses of corticosteroids did not influence ISCK. ISCK was stimulated only after chronic treatment (4 days). These findings suggest that, in the distal colon of young rats, (1) both corticosteroids may regulate amiloride-sensitive Na+ absorption and barium-sensitive K+ secretion, (2) different receptors mediate the colonic effects of glucocorticoids and mineralocorticoids, (3) immature rats are more sensitive to corticosteroids than adult animals, and (4) the acute effect of corticosteroids is an increase in Na+ absorption which is followed by delayed stimulation of K+ secretion.

UI MeSH Term Description Entries
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004963 Estrenes Unsaturated derivatives of the ESTRANES with methyl groups at carbon-13, with no carbon at carbon-10, and with no more than one carbon at carbon-17. They must contain one or more double bonds. 19-Norandrostenes,19 Norandrostenes
D000305 Adrenal Cortex Hormones HORMONES produced by the ADRENAL CORTEX, including both steroid and peptide hormones. The major hormones produced are HYDROCORTISONE and ALDOSTERONE. Adrenal Cortex Hormone,Corticoid,Corticoids,Corticosteroid,Corticosteroids,Cortex Hormone, Adrenal,Hormone, Adrenal Cortex,Hormones, Adrenal Cortex
D000315 Adrenalectomy Excision of one or both adrenal glands. (From Dorland, 28th ed) Adrenalectomies
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000450 Aldosterone A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. Aldosterone, (+-)-Isomer,Aldosterone, (11 beta,17 alpha)-Isomer
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret

Related Publications

J Pácha, and M Popp, and K Capek
July 1996, British journal of pharmacology,
J Pácha, and M Popp, and K Capek
August 1996, The American journal of physiology,
J Pácha, and M Popp, and K Capek
September 1995, Pediatric research,
J Pácha, and M Popp, and K Capek
February 2001, Acta physiologica Scandinavica,
J Pácha, and M Popp, and K Capek
November 1983, The American journal of physiology,
J Pácha, and M Popp, and K Capek
January 2000, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
J Pácha, and M Popp, and K Capek
June 1987, Neurochemical research,
Copied contents to your clipboard!