[Neuronal organization of the periamygdaloid cortex in the cat brain]. 1988

Iu K Mukhina

Neuronal organization of the fields Pmm, Pml2, Pe and epm of the periamygdaloid cortex of the cat brain has been studied by means of Golgi and Nissl methods. The field Pmm essentially differs from other fields of this cortex by primitiveness of its cytoarchitectonic an neuronal organization (two layers uniform by the composition of their neurons are distinguished, the structure of the latter is relatively primitive). In the medial part of this field long axonal rarely branching short dendritic, and in the lateral part--poorly differentiating pyramidal and spindle-like cells predominate. The field Pmm can be considered as a transitional formation between the subcortex (the medial nucleus of the amygdaloid body) and other fields of the periamygdaloid cortex. The fields Pml2, Pe and epm are built more complexly: the cells are organized in 4 layers, more complexly differentiated by their form and size than in the field Pmm and correspondingly more various (long axonal densely branching cells are observed: pyramidal and spindle-like--of the cortical type and bushy--of the subcortical type, as well as long axonal rarely branching reticular cells). The short axonal cells in the fields Pml2, Pe and epm are rather variable in their form, size and direction of axons; in the field Pmm they are less numerous. The field Pmm and the complex of the fields Pml2, Pe and epm are perhaps different in their function, this is evident from different projection of their neurons. Axons of the cells in the field Pmm get into less differentiated and the most ancient medial nucleus of the amygdaloid body and into the ancient system of connections of the latter--terminal strip, and neurons of the fields Pml2, Pe and epm are projected into the basolateral part of the amygdaloid body and into the external capsule--phylogenetically younger structures. Besides, poverty of the axonal collateralies in the long axonal neurons and a small amount and uniformity of the forms of the short axonal cells in the field Pmm and contrary, rich collateralies and variety of short axonal cells in the composition of other fields demonstrate more complex internal integrative function, performing in that composition.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

Iu K Mukhina
January 2000, Morfologiia (Saint Petersburg, Russia),
Iu K Mukhina
December 1951, Folia psychiatrica et neurologica japonica,
Iu K Mukhina
December 1973, Arkhiv anatomii, gistologii i embriologii,
Iu K Mukhina
August 1988, Arkhiv anatomii, gistologii i embriologii,
Iu K Mukhina
January 1975, Arkhiv anatomii, gistologii i embriologii,
Iu K Mukhina
January 1993, Cerebral cortex (New York, N.Y. : 1991),
Iu K Mukhina
January 1990, Neuroscience and behavioral physiology,
Iu K Mukhina
January 1970, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
Iu K Mukhina
January 1978, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
Iu K Mukhina
January 1976, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
Copied contents to your clipboard!