Microtubule polarity and distribution in teleost photoreceptors. 1988

L L Troutt, and B Burnside
Department of Physiology-Anatomy, University of California, Berkeley 94720.

We have characterized the polarity orientation of microtubules in teleost retinal photoreceptors. The highly polarized rods and cones contain large numbers of paraxially aligned microtubules and exhibit dramatic cell shape changes. The myoid portion of the inner segments of both rods and cones undergoes contraction and elongation in response to light or circadian signals. Previous studies in our laboratory have demonstrated that in cones but not rods myoid elongation is microtubule-dependent. To determine polarity orientation, we decorated microtubules in photoreceptors of the green sunfish Lepomis cyanellus, with hooks formed from either exogenous or endogenous tubulin subunits. The direction of curvature of the attached hooks in cross section indicates microtubule polarity orientation by allowing one to determine the relative positions within the cell of the plus (fast-growing) and minus (slow-growing) ends of the microtubules. We found that virtually all cytoplasmic microtubules in photoreceptors are oriented with plus ends directed toward the synapse and minus ends toward the basal body at the base of the outer segment. Axonemal microtubules in photoreceptor outer segments are oriented with minus ends toward the basal body as in cilia and flagella. We have suggested previously that cone myoid elongation is mediated by mechanochemical sliding between microtubules. The polarity observations reported here indicate that if microtubules do slide in cones, sliding would necessarily occur between microtubules of parallel orientation as is observed in cilia and flagella.

UI MeSH Term Description Entries
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D010473 Perciformes The most diversified of all fish orders and the largest vertebrate order. It includes many of the commonly known fish such as porgies, croakers, sunfishes, dolphin fish, mackerels, TUNA, etc. Bluegill,Croakers,Dolphin Fish,Porgies,Sparid Fish,Sparus,Sunfishes,Centrarchidae,Mackerels,Mahi-Mahi,Bluegills,Croaker,Fish, Sparid,Mackerel
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014404 Tubulin A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE. alpha-Tubulin,beta-Tubulin,delta-Tubulin,epsilon-Tubulin,gamma-Tubulin,alpha Tubulin,beta Tubulin,delta Tubulin,epsilon Tubulin,gamma Tubulin

Related Publications

L L Troutt, and B Burnside
June 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology,
L L Troutt, and B Burnside
August 2016, Current opinion in neurobiology,
L L Troutt, and B Burnside
March 2007, Genes & development,
L L Troutt, and B Burnside
April 2004, Histology and histopathology,
L L Troutt, and B Burnside
April 2008, Biology of the cell,
L L Troutt, and B Burnside
March 2022, Developmental biology,
L L Troutt, and B Burnside
June 1985, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
L L Troutt, and B Burnside
June 2022, Developmental biology,
L L Troutt, and B Burnside
February 2002, The Journal of cell biology,
Copied contents to your clipboard!