Neurohypophyseal aging: differential changes in oxytocin and vasopressin release, studied in Fischer 344 and Sprague-Dawley rats. 1988

V Zbuzek, and A R Fuchs, and V K Zbuzek, and W H Wu
Department of Anesthesiology, University of Medicine and Dentistry, New Jersey Medical School, Newark.

We had previously shown that the hypothalamo-neurohypophyseal vasopressin secreting system is suppressed in aged rats. In the present study, using aged (26 months) male Fischer 344 (F344) rats, we showed that in contrast to vasopressin, oxytocin plasma concentration and hypothalamic content were unaltered in comparison with young (2-3 months) rats; however, based on data from our past and current studies, the neurohypophyseal concentrations of both hormones were found to be decreased in aged rats. We also compared the effect of aging on the oxytocin and vasopressin in secretory functions. Superfusion technique was employed to examine oxytocin and vasopressin release from isolated neural lobes of young (2-3 months) and old (26 months) male F344 and young (2-3 months), middle-aged (12 months) and old (30 months) Sprague-Dawley (SD) rats. Aging affected basal release of oxytocin and vasopressin in a differential manner. Expressed per gland, basal release of oxytocin increased in aged rats of both strains; whereas vasopressin release decreased in SD, and did not change in F344, old rats. The vasopressin responses to electrical stimulation, 56 mM K+ and initial traumatic release were decreased in aged rats; whereas oxytocin responses were either unaltered or decreased much less. All age-related changes were more pronounced in SD than in F344 rats. Thus, while the aging process is associated with a significant impairment in the vasopressin secretory function, the oxytocin secretory function is much less affected by that process. Significant strain differences were observed in the effects of aging on oxytocin and vasopressin release.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine

Related Publications

V Zbuzek, and A R Fuchs, and V K Zbuzek, and W H Wu
January 2002, Toxicological sciences : an official journal of the Society of Toxicology,
V Zbuzek, and A R Fuchs, and V K Zbuzek, and W H Wu
January 1989, Neurobiology of aging,
V Zbuzek, and A R Fuchs, and V K Zbuzek, and W H Wu
January 1989, Fundamental and applied toxicology : official journal of the Society of Toxicology,
V Zbuzek, and A R Fuchs, and V K Zbuzek, and W H Wu
May 2004, Archives of pharmacal research,
V Zbuzek, and A R Fuchs, and V K Zbuzek, and W H Wu
December 2001, Epilepsy research,
V Zbuzek, and A R Fuchs, and V K Zbuzek, and W H Wu
April 2009, Microbial pathogenesis,
V Zbuzek, and A R Fuchs, and V K Zbuzek, and W H Wu
February 1994, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie,
V Zbuzek, and A R Fuchs, and V K Zbuzek, and W H Wu
January 1977, Experimental gerontology,
V Zbuzek, and A R Fuchs, and V K Zbuzek, and W H Wu
May 1993, Free radical biology & medicine,
Copied contents to your clipboard!