Increased responsiveness to macrophage-activating factor (MAF) after alteration of macrophage membranes. 1977

W F Piessens, and H G Remold, and J R David

Guinea pig macrophages pretreated with the esterase inhibitor, antithrombin III (AT III) show increased responsiveness to macrophage-activating factor (MAF) as demonstrated by their enhanced cytotoxicity for tumor cells. Other proteins that are not esterase inhibitors did not enhance the effect of MAF on the macrophage. Enhancement of MAF activity was also obtained when macrophages were preincubated with the cell surface reactant, diazotized sulfanilic acid (DSA). These studies indicate that the effect of MAF can be enhanced by chemical modifications of the macrophage membrane. They also provide further evidence to support the hypothesis that an esterase on the macrophage membrane modulates this cell's responsiveness to lymphocyte mediators.

UI MeSH Term Description Entries
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D008263 Macrophage Migration-Inhibitory Factors Proteins released by sensitized LYMPHOCYTES and possibly other cells that inhibit the migration of MACROPHAGES away from the release site. The structure and chemical properties may vary with the species and type of releasing cell. Macrophage Migration Inhibitory Factor,Migration Inhibition Factors, Macrophage,Macrophage Migration Inhibition Factors,Migration Inhibition Factor, Macrophage,Macrophage Migration Inhibitory Factors,Migration-Inhibitory Factors, Macrophage
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003601 Cytotoxicity Tests, Immunologic The demonstration of the cytotoxic effect on a target cell of a lymphocyte, a mediator released by a sensitized lymphocyte, an antibody, or complement. AHG-CDC Tests,Anti-Human Globulin Complement-Dependent Cytotoxicity Tests,Microcytotoxicity Tests,Anti Human Globulin Complement Dependent Cytotoxicity Tests,Anti-Human Globulin Complement-Dependent Cytotoxicity Test,Antiglobulin-Augmented Lymphocytotoxicity Test,Antiglobulin-Augmented Lymphocytotoxicity Tests,Cytotoxicity Test, Immunologic,Cytotoxicity Tests, Anti-Human Globulin Complement-Dependent,Cytotoxicity Tests, Immunological,Immunologic Cytotoxicity Test,Immunologic Cytotoxicity Tests,Lymphocytotoxicity Test, Antiglobulin-Augmented,Lymphocytotoxicity Tests, Antiglobulin-Augmented,Microcytotoxicity Test,AHG CDC Tests,AHG-CDC Test,Anti Human Globulin Complement Dependent Cytotoxicity Test,Antiglobulin Augmented Lymphocytotoxicity Test,Antiglobulin Augmented Lymphocytotoxicity Tests,Cytotoxicity Test, Immunological,Cytotoxicity Tests, Anti Human Globulin Complement Dependent,Immunological Cytotoxicity Test,Immunological Cytotoxicity Tests,Lymphocytotoxicity Test, Antiglobulin Augmented,Lymphocytotoxicity Tests, Antiglobulin Augmented
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000991 Antithrombins Endogenous factors and drugs that directly inhibit the action of THROMBIN, usually by blocking its enzymatic activity. They are distinguished from INDIRECT THROMBIN INHIBITORS, such as HEPARIN, which act by enhancing the inhibitory effects of antithrombins. Antithrombin,Direct Antithrombin,Direct Antithrombins,Direct Thrombin Inhibitor,Direct Thrombin Inhibitors,Antithrombin, Direct,Antithrombins, Direct,Inhibitor, Direct Thrombin,Thrombin Inhibitor, Direct,Thrombin Inhibitors, Direct
D013425 Sulfanilic Acids Aminobenzenesulfonic acids. Organic acids that are used in the manufacture of dyes and organic chemicals and as reagents. Aminobenzenesulfonic Acids,Anilinesulfonic Acids,Acids, Aminobenzenesulfonic,Acids, Anilinesulfonic,Acids, Sulfanilic

Related Publications

W F Piessens, and H G Remold, and J R David
November 1999, Nihon rinsho. Japanese journal of clinical medicine,
W F Piessens, and H G Remold, and J R David
August 2005, Nihon rinsho. Japanese journal of clinical medicine,
W F Piessens, and H G Remold, and J R David
December 1996, Cellular immunology,
W F Piessens, and H G Remold, and J R David
February 1985, The Japanese journal of experimental medicine,
W F Piessens, and H G Remold, and J R David
January 1983, Lymphokine research,
W F Piessens, and H G Remold, and J R David
January 1988, Advances in experimental medicine and biology,
W F Piessens, and H G Remold, and J R David
November 2011, Clinical chemistry and laboratory medicine,
W F Piessens, and H G Remold, and J R David
July 1984, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!