Oxypaeoniflorin improves myocardial ischemia/reperfusion injury by activating the Sirt1/Foxo1 signaling pathway. 2020

Kai Wang, and Wei Hu
Department of TCM pharmacy,Ningbo Medical Center Li Huili Hospital, China.

Myocardial ischemia/reperfusion (MI/R) injury is a leading cause of damage to cardiac tissues and is associated with high mortality and disability rates worldwide. Oxypaeoniflorin (OPA) has been found to be the main constituent of Paeonia veitchii Lynch. This study was conducted to explore the effect of OPA on MI/R injury and its potential mechanism. An in vivo MI/R injury model was established by transient coronary ligation in BALB/c mice, and an in vitro hypoxia/reoxygenation (H/R) injury model was established with rat cardiomyocyte H9c2 cells. Echocardiographic assessments demonstrated that OPA significantly reduced disruption of cardiac function and improved the indicators of ejection fraction (EF) and fractional shortening (FS). The enzyme-linked immunosorbent assay (ELISA) results suggested that OPA significantly reduced the release of myocardial infarction-related factors, such as the creatine kinase (CK-MB), cardiac troponin I (cTnI) and cardiac troponin T (cTnT). Additionally, hematoxylin-eosin (HandE) staining demonstrated that OPA markedly inhibited the myocardial apoptosis and necrosis caused by MI/R. Consistently, the results obtained from the cell counting kit-8 (CCK-8) and flow cytometry assays revealed that OPA obviously reversed the H/R-induced decrease in cell activity and increase in apoptosis of H9c2 cells. Furthermore, western blot assays indicated that OPA inhibited apoptosis by activating the Sirt1 (silent information regulator factor 2 related enzyme 1)/Foxo1(forkhead transcription factor FKHR) signaling pathway in myocardial tissues and H9c2 cells. Collectively, these novel findings are the first to provide strong evidence that OPA attenuates MI/R injury by activating the Sirt1 (silent information regulator factor 2 related enzyme 1)/Foxo1(forkhead transcription factor FKHR) signaling-mediated anti-apoptotic pathway.

UI MeSH Term Description Entries
D008297 Male Males
D008517 Phytotherapy Use of plants or herbs to treat diseases or to alleviate pain. Herb Therapy,Herbal Therapy
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004365 Drugs, Chinese Herbal Chinese herbal or plant extracts which are used as drugs to treat diseases or promote general well-being. The concept does not include synthesized compounds manufactured in China. Chinese Herbal Drugs,Plant Extracts, Chinese,Chinese Drugs, Plant,Chinese Plant Extracts,Extracts, Chinese Plant,Herbal Drugs, Chinese
D000071161 Forkhead Box Protein O1 A forkhead box transcription factor that is a major target of INSULIN signaling and regulator of metabolic homeostasis in response to OXIDATIVE STRESS. It binds to the insulin RESPONSE ELEMENT (IRE) and the related Daf-16 family binding element (DBE). Its activity is suppressed by insulin and it also regulates OSTEOBLAST proliferation, controls bone mass, and skeletal regulation of GLUCOSE metabolism. It promotes GLUCONEOGENESIS in HEPATOCYTES and regulates gene expression in ADIPOSE TISSUE. It is also an important CELL DEATH regulator. Chromosomal aberrations involving the FOXO1 gene occur in RHABDOMYOSARCOMA. FOXO1 Protein,Forkhead in Rhabdomyosarcoma Protein

Related Publications

Kai Wang, and Wei Hu
June 2024, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Kai Wang, and Wei Hu
August 2019, Journal of cellular physiology,
Copied contents to your clipboard!