Tricyclic fluoroquinolones as potential antimicrobial agents. 1988

J S Skotnicki, and B A Steinbaugh, and D P Strike
Medicinal Chemistry Department, Wyeth Laboratories, Inc., Philadelphia, PA 19101.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D042462 4-Quinolones QUINOLONES containing a 4-oxo (a carbonyl in the para position to the nitrogen). They inhibit the A subunit of DNA GYRASE and are used as antimicrobials. Second generation 4-quinolones are also substituted with a 1-piperazinyl group at the 7-position and a fluorine at the 6-position. 4-Oxoquinoline,4-Quinolinone,4-Quinolone,4-Oxoquinolines,4-Quinolinones,4 Oxoquinoline,4 Oxoquinolines,4 Quinolinone,4 Quinolinones,4 Quinolone,4 Quinolones
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

J S Skotnicki, and B A Steinbaugh, and D P Strike
July 1975, Journal of medicinal chemistry,
J S Skotnicki, and B A Steinbaugh, and D P Strike
January 1989, Reviews of infectious diseases,
J S Skotnicki, and B A Steinbaugh, and D P Strike
August 2010, Organic & biomolecular chemistry,
J S Skotnicki, and B A Steinbaugh, and D P Strike
October 2022, Bioorganic & medicinal chemistry letters,
J S Skotnicki, and B A Steinbaugh, and D P Strike
October 2022, Molecules (Basel, Switzerland),
J S Skotnicki, and B A Steinbaugh, and D P Strike
January 2023, Antibiotics (Basel, Switzerland),
J S Skotnicki, and B A Steinbaugh, and D P Strike
January 1989, Zentralblatt fur Mikrobiologie,
J S Skotnicki, and B A Steinbaugh, and D P Strike
January 2011, PloS one,
J S Skotnicki, and B A Steinbaugh, and D P Strike
August 2000, IDrugs : the investigational drugs journal,
J S Skotnicki, and B A Steinbaugh, and D P Strike
October 1999, Farmaco (Societa chimica italiana : 1989),
Copied contents to your clipboard!