Affinity of intact Escherichia coli for hydrophobic membrane probes is a function of the physiological state of the cells. 1977

D Nieva-Gomez, and R B Gennis

The fluorescence parameters of several common membrane probes in the presence of whole E. coli have been examined. The probes included electrically neutral lipophilic molecules N-phenyl-1-naphthylamine, pyrene, and 1,6-diphenyl-1,3,5-hexatriene as well as the negatively charged molecule 8-anilino-1-naphthalene sulfonate. It is demonstrated in each case that certain fluorescence parameters are a function of the state of energization of the cells. All the probes appear to monitor structural changes in the E. coli envelope which accompany the energization and de-energization of the cells. tthe phenomenon is completely reversible as demonstrated by re-energizing anoxic cells by the addition of oxygen, or starved cells by the addition of substrate. All the results are qualitatively consistent with an increased binding of probe by de-energized cells and a subsequent expulsion of probe when the cells are re-energized. A pyrene substituted with a photosensitive group, 1-azidopyrene, has been synthesized. Photolysis in the presence of a suspension of energized E. coli reveals a relatively small amount of probe irreversibly bound to the cells. However, in the presence of cells that have been de-energized the amount of irreversibly bound probe is dramatically increased. This molecule should be useful for localizing the regions of the bacterial envelope that are involved in the structural changes being monitored in these experiments.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011721 Pyrenes A group of condensed ring hydrocarbons.
D003087 Colicins Bacteriocins elaborated by strains of Escherichia coli and related species. They are proteins or protein-lipopolysaccharide complexes lethal to other strains of the same species. Colicin,Colicin E9,Colicine,Colicines,Colicin A,Colicin B,Colicin E,Colicin E1,Colicin E2,Colicin E3,Colicin E8,Colicin HSC10,Colicin Ia,Colicin Ib,Colicin K,Colicin K-K235,Colicin M,Colicin N,Colicin V,Colicins E,Colicins E9,Precolicin E1,Colicin K K235,E9, Colicin
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

D Nieva-Gomez, and R B Gennis
March 1981, FEBS letters,
D Nieva-Gomez, and R B Gennis
March 1985, Biochimica et biophysica acta,
D Nieva-Gomez, and R B Gennis
January 2008, Journal of bacteriology,
D Nieva-Gomez, and R B Gennis
February 1983, Applied and environmental microbiology,
D Nieva-Gomez, and R B Gennis
March 1986, Biochemical and biophysical research communications,
D Nieva-Gomez, and R B Gennis
February 1977, Journal of bacteriology,
D Nieva-Gomez, and R B Gennis
October 1995, The Journal of applied bacteriology,
D Nieva-Gomez, and R B Gennis
August 1980, Applied and environmental microbiology,
Copied contents to your clipboard!