Dynamic structure of whole cells probed by nuclear Overhauser enhanced nitrogen-15 nuclear magnetic resonance spectroscopy. 1977

A Lapidot, and C S Irving

The proton-decoupled 15N Fourier transform nuclear magnetic resonance (NMR) spectra of 15N-enriched Escherichia coli, Bacillus licheniformis, baker's yeast, and Friend leukemic cells were obtained. The 15N NMR spectra of whole cells displayed 15N resonances originating from (i) protein backbones with lysine, arginine, and histidine side chains, (ii) ribonucleic acids, (iii) peptidoglycan, and (iv) phospholipids. Several additional amino and amide resonances were observed but not identified. In bacteria and yeast, the cell wall was found to be the site of a relatively mobile group of molecules, whose resonances dominate the proton-decoupled 15N NMR spectra of whole cells. 15N NMR chemical shifts and nuclear Overhauser effects have provided information on the in vivo structure of cell wall peptidoglycan. In Staphylococcus aureus the pentaglycine cross-bridge of cell wall peptidoglycan was found to have a random coil conformation. In B. licheniformis considerable segmental motional freedom was detected in teichuronic acid and peptidoglycan polysaccharide chains in the wall of the intact cell.

UI MeSH Term Description Entries
D009587 Nitrogen Isotopes Stable nitrogen atoms that have the same atomic number as the element nitrogen but differ in atomic weight. N-15 is a stable nitrogen isotope. Nitrogen Isotope,Isotope, Nitrogen,Isotopes, Nitrogen
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010457 Peptidoglycan A structural polymer of the bacterial cell envelope consisting of sugars and amino acids which is responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. Murein,Pseudomurein
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002477 Cells The fundamental, structural, and functional units or subunits of living organisms. They are composed of CYTOPLASM containing various ORGANELLES and a CELL MEMBRANE boundary. Cell
D004915 Leukemia, Erythroblastic, Acute A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood. Di Guglielmo's Disease,Erythremic Myelosis,Erythroblastic Leukemia, Acute,Erythroleukemia,Leukemia, Myeloid, Acute, M6,Myeloid Leukemia, Acute, M6,Di Guglielmo Disease,Acute Erythroblastic Leukemia,Acute Erythroblastic Leukemias,Di Guglielmos Disease,Disease, Di Guglielmo,Disease, Di Guglielmo's,Erythremic Myeloses,Erythroblastic Leukemias, Acute,Erythroleukemias,Leukemia, Acute Erythroblastic,Leukemias, Acute Erythroblastic,Myeloses, Erythremic,Myelosis, Erythremic
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

A Lapidot, and C S Irving
March 1977, The Journal of organic chemistry,
A Lapidot, and C S Irving
January 2001, Methods in enzymology,
A Lapidot, and C S Irving
February 1977, Journal of the American Chemical Society,
A Lapidot, and C S Irving
September 1974, Endeavour,
A Lapidot, and C S Irving
November 1994, Solid state nuclear magnetic resonance,
A Lapidot, and C S Irving
April 2020, Journal of magnetic resonance (San Diego, Calif. : 1997),
A Lapidot, and C S Irving
December 1979, The Japanese journal of antibiotics,
A Lapidot, and C S Irving
January 2021, Magnetic resonance (Gottingen, Germany),
Copied contents to your clipboard!