| D011487 |
Protein Conformation |
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). |
Conformation, Protein,Conformations, Protein,Protein Conformations |
|
| D003432 |
Cross-Linking Reagents |
Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. |
Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking |
|
| D013025 |
Glycine max |
An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS. |
Soy Beans,Soybeans,Bean, Soy,Beans, Soy,Soy Bean,Soybean |
|
| D015394 |
Molecular Structure |
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. |
Structure, Molecular,Molecular Structures,Structures, Molecular |
|
| D030262 |
Soybean Proteins |
Proteins which are present in or isolated from SOYBEANS. |
Dietary Soybean Protein,Soy Bean Protein,Soybean Protein,Dietary Soybean Proteins,Soy Bean Proteins,Soy Protein,Soy Proteins,Bean Protein, Soy,Protein, Dietary Soybean,Protein, Soy,Protein, Soy Bean,Protein, Soybean,Proteins, Dietary Soybean,Proteins, Soy,Soybean Protein, Dietary,Soybean Proteins, Dietary |
|
| D037102 |
Lectins |
Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. |
Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal |
|
| D037121 |
Plant Lectins |
Protein or glycoprotein substances of plant origin that bind to sugar moieties in cell walls or membranes. Some carbohydrate-metabolizing proteins (ENZYMES) from PLANTS also bind to carbohydrates, however they are not considered lectins. Many plant lectins change the physiology of the membrane of BLOOD CELLS to cause agglutination, mitosis, or other biochemical changes. They may play a role in plant defense mechanisms. |
Lectins, Plant,Phytagglutinin,Plant Agglutinin,Plant Lectin,Agglutinins, Plant,Phytagglutinins,Plant Agglutinins,Agglutinin, Plant,Lectin, Plant |
|