Human eccrine sweat gland epithelial cultures express ductal characteristics. 1988

D J Brayden, and A W Cuthbert, and C M Lee
Department of Pharmacology, University of Cambridge.

1. Isolated human eccrine sweat glands were cultured in vitro. Cells were harvested and plated onto permeable supports to form confluent cell sheets, area 0.2 cm2. These were used to study the electrogenic transepithelial transport of ions by measurement of short-circuit current (SCC). Epithelial sheets had a basal SCC of 5.89 +/- 0.62 microA cm-2 (n = 33) and a transepithelial resistance of 74.1 +/- 5.6 omega cm2 (n = 33). The transepithelial potential difference varied between -0.2 and -1.8 mV with a mean value of -0.71 +/- 0.09 mV (n = 33). 2. The basal current was abolished by addition of 10 microM-amiloride to the apical bathing solution. The concentration of amiloride which inhibited basal SCC by 50% (EC50) was 0.4 microM. Cultures prepared from the secretory coil of sweat glands, rather than from whole glands, were similarly sensitive to amiloride (EC50 = 0.8 microM). 3. Lysylbradykinin (LBK), carbachol, isoprenaline, prostaglandin E2 (PGE2) and A23187 all increased SCC in cultures from whole glands. LBK responses were obtained with basolateral and not with apical application. Furthermore LBK actions were not substantially altered by cyclo-oxygenase inhibition but showed marked desensitization upon repeated application. Sheet cultures prepared from sweat gland coils also showed SCC responses to both carbachol and LBK. Forskolin, an activator of adenylate cyclase, did not alter SCC in either type of preparation. 4. Replacement of chloride and of chloride and bicarbonate in the bathing solution did not cause attenuation of the responses to LBK or carbachol in whole-gland sheet cultures. Furthermore responses were unaffected by piretanide or acetazolamide. These results were taken to indicate that anion secretion was not the basis for the SCC responses. 5. Responses to LBK and carbachol were significantly reduced by amiloride (10 microM), this effect being reversible. No responses to LBK or carbachol were seen when N-methyl-D-glucamine (NMDG) was used to replace sodium, whereas reintroduction of sodium ions restored responsiveness to these agents. 6. The SCC responses to the muscarinic agonist carbachol and to LBK appear to be due to stimulation of amiloride-sensitive, electrogenic sodium absorption in whole-gland sheet cultures. Further it would appear that, in culture, the pleuripotential capacity of the cells is revealed since both whole-gland and secretory coil cultures exhibit some properties usually associated in vivo with duct cells. Many mammalian epithelia show electrogenic chloride secretion both in response to carbachol and LBK but also in response to activation of adenylate cyclase with forskolin.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010894 Piroxicam A cyclooxygenase inhibiting, non-steroidal anti-inflammatory agent (NSAID) that is well established in treating rheumatoid arthritis and osteoarthritis and used for musculoskeletal disorders, dysmenorrhea, and postoperative pain. Its long half-life enables it to be administered once daily. CP-16171,Feldene,CP 16171,CP16171
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret

Related Publications

D J Brayden, and A W Cuthbert, and C M Lee
October 1993, The American Journal of dermatopathology,
D J Brayden, and A W Cuthbert, and C M Lee
September 2011, Anatomical record (Hoboken, N.J. : 2007),
D J Brayden, and A W Cuthbert, and C M Lee
April 1960, The Journal of investigative dermatology,
D J Brayden, and A W Cuthbert, and C M Lee
January 2007, Brazilian journal of otorhinolaryngology,
D J Brayden, and A W Cuthbert, and C M Lee
August 1965, Postgraduate medicine,
D J Brayden, and A W Cuthbert, and C M Lee
June 1991, Journal of the American Academy of Dermatology,
D J Brayden, and A W Cuthbert, and C M Lee
August 2012, The Journal of investigative dermatology,
D J Brayden, and A W Cuthbert, and C M Lee
September 2015, Experimental dermatology,
D J Brayden, and A W Cuthbert, and C M Lee
November 1973, The American journal of physiology,
D J Brayden, and A W Cuthbert, and C M Lee
January 1989, Medicina cutanea ibero-latino-americana,
Copied contents to your clipboard!