Carboxypeptidase S-1 from Penicillium janthinellum: enzymatic properties in hydrolysis and aminolysis reactions. 1988

K Breddam
Department of Chemistry, Carlsberg Laboratory, Copenhagen Valby.

Carboxypeptidase S-1 from Penicillium janthinellum has been isolated by affinity chromatography and characterized. The enzyme activity is unusually stable in organic solvents, e.g. 80% methanol. The hydrolysis of peptide substrates is apparently dependent on three ionizable groups. One group, with pKa of 4.0-4.5, is a catalytically essential residue in its deprotonated form, and another group with a pKa of 6.5-7.0 functions in its protonated form, apparently as the binding site for the C-terminal carboxylate group of peptide substrates. The third group, with a pKa of 5.0-5.5, appears to be a carboxylic acid group located at the S1 binding site. Deprotonation of this group to form a negatively charged carboxylate group has an adverse effect on the hydrolysis of substrates with hydrophobic amino acid residues at the P1 position and a beneficial effect on the hydrolysis of substrates with the positively charged arginyl or lysyl residues at this position. The substrate preference of the enzyme is consequently pH dependent. At pH 6.0 (the optimum for ester hydrolysis) the enzyme is essentially specific for Bz-X-OMe substrates where X = Arg and Lys. Using amino acids and amino acid amides as nucleophiles carboxypeptidase S-1 efficiently catalyses the formation of peptide bonds by aminolysis of peptides (transpeptidation reactions) and peptide esters provided that the substrate contains a basic amino acid residue at the P1 position, e.g. Bz-Arg-OBu and Bz-Arg-Leu-OH. With several nucleophiles the fractions of aminolysis exceed those previously reported in similar studies with carboxypeptidase Y and malt carboxypeptidase II.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010407 Penicillium A mitosporic Trichocomaceae fungal genus that develops fruiting organs resembling a broom. When identified, teleomorphs include EUPENICILLIUM and TALAROMYCES. Several species (but especially PENICILLIUM CHRYSOGENUM) are sources of the antibiotic penicillin. Penicilliums
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
Copied contents to your clipboard!