Regulation of LH subunit mRNA levels by gonadal hormones in female rats. 1988

S D Abbot, and K Docherty, and R N Clayton
Department of Medicine, University of Birmingham, Edgbaston.

To determine the physiological role of the ovaries in regulation of LH subunit gene expression, levels of cytoplasmic mRNA were measured in a cDNA-RNA dot-blot hybridization assay. An increase (twofold) in alpha mRNA was first detected 8 days after ovariectomy and then remained stable for 4 weeks. In contrast, LH-beta mRNA increased by 60-79% within 12 h of removing the ovaries and then rose progressively to six times the intact values at 3 and 4 weeks. Increases in LH-beta mRNA were always greater than those of alpha mRNA. Oestradiol, and oestradiol plus progesterone, but not progesterone alone, prevented the rise in alpha and LH-beta mRNA 10 days after ovariectomy. Three days after ovariectomy, alpha mRNA, but not LH-beta mRNA, was suppressed to below intact control values by oestradiol and oestradiol plus progesterone, indicating greater sensitivity of alpha mRNA to oestradiol inhibition at this stage. A single injection of oestradiol (1 microgram s.c.) to rats ovariectomized 14 days previously transiently suppressed alpha and LH-beta mRNA levels and serum LH concentrations in parallel for 1-8 h, after which high preinjection values were restored. However, pituitary LH content remained suppressed after LH mRNA levels had returned to the control values of ovariectomized rats. In most instances there was a qualitative positive correlation between changes in alpha and LH-beta mRNA, pituitary LH content and serum LH concentrations. LH content reflected LH-beta mRNA changes more closely than those of alpha mRNA. However, in oestradiol-treated rats ovariectomized 10 days previously, LH content remained increased despite normalization of the LH-beta and alpha mRNA levels, suggesting differential sensitivity to oestradiol of the gene expression and translational processes. Thus divergence of pre- and post-translational regulation of LH biosynthesis was demonstrated. These results imply an important physiological role for female sex hormones in the control of LH gene expression and LH biosynthesis. Prolactin mRNA fell by 30-50% for the first 2 weeks after ovariectomy, but by 3 and 4 weeks values were similar to those of intact controls. Serum and pituitary prolactin levels were reduced by 50% or more at all time-points, despite normalization of mRNA. Treatment of ovariectomized rats for 10 days with oestradiol and progesterone, either alone or combined, reversed the fall in prolactin mRNA and serum and pituitary prolactin levels. These changes in prolactin gene expression and synthesis were opposite to those of LH subunits in response to the same in-vivo hormone manipulations.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

S D Abbot, and K Docherty, and R N Clayton
May 1989, Journal of molecular endocrinology,
S D Abbot, and K Docherty, and R N Clayton
October 1990, Endocrinologia japonica,
S D Abbot, and K Docherty, and R N Clayton
January 1992, The Journal of endocrinology,
S D Abbot, and K Docherty, and R N Clayton
November 1997, General and comparative endocrinology,
S D Abbot, and K Docherty, and R N Clayton
August 1990, Biology of reproduction,
S D Abbot, and K Docherty, and R N Clayton
February 1985, Neuroendocrinology,
S D Abbot, and K Docherty, and R N Clayton
September 1989, Journal of molecular endocrinology,
S D Abbot, and K Docherty, and R N Clayton
December 1996, Sheng li xue bao : [Acta physiologica Sinica],
S D Abbot, and K Docherty, and R N Clayton
January 1988, The American journal of physiology,
Copied contents to your clipboard!