Alterations in the ribosomal protein bL12 of E. coli affecting the initiation, elongation and termination of protein synthesis. 2020

Adam D Younkin, and Steven T Gregory, and Michael O'Connor
School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.

In bacteria, ribosomal protein bL12 forms the prominent stalk structure on the ribosome and binds to multiple, distinct translational GTPase factors during the sequential steps of translation. Using a genetic selection in E. coli for altered readthrough of UGA stop codons, we have isolated seven different mutations affecting the C-terminal domain of the protein that forms the interaction surface with translation factors. Analysis of these altered proteins, along with four additional alterations previously shown to affect IF2-ribosome interactions, indicates that multiple steps of translation are affected, consistent with bL12's interaction with multiple factors. Surprisingly, deletion of the release factor GTPase, RF3, has relatively little effect on bL12-promoted stop codon readthrough, suggesting that other steps in termination are also influenced by bL12.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010441 Peptide Chain Elongation, Translational A process of GENETIC TRANSLATION, when an amino acid is transferred from its cognate TRANSFER RNA to the lengthening chain of PEPTIDES. Chain Elongation, Peptide, Translational,Protein Biosynthesis Elongation,Protein Chain Elongation, Translational,Protein Translation Elongation,Translation Elongation, Genetic,Translation Elongation, Protein,Translational Elongation, Protein,Translational Peptide Chain Elongation,Biosynthesis Elongation, Protein,Elongation, Genetic Translation,Elongation, Protein Biosynthesis,Elongation, Protein Translation,Elongation, Protein Translational,Genetic Translation Elongation,Protein Translational Elongation
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D010443 Peptide Chain Termination, Translational A process of GENETIC TRANSLATION whereby the terminal amino acid is added to a lengthening polypeptide. This termination process is signaled from the MESSENGER RNA, by one of three termination codons (CODON, TERMINATOR) that immediately follows the last amino acid-specifying CODON. Chain Termination, Peptide, Translational,Protein Biosynthesis Termination,Protein Chain Termination, Translational,Protein Translation Termination,Translation Termination, Genetic,Translation Termination, Protein,Translational Peptide Chain Termination,Translational Termination, Protein,Biosynthesis Termination, Protein,Genetic Translation Termination,Protein Translational Termination,Termination, Genetic Translation,Termination, Protein Biosynthesis,Termination, Protein Translation,Termination, Protein Translational
D010454 Peptide Termination Factors Proteins that are involved in the peptide chain termination reaction (PEPTIDE CHAIN TERMINATION, TRANSLATIONAL) on RIBOSOMES. They include codon-specific class-I release factors, which recognize stop signals (TERMINATOR CODON) in the MESSENGER RNA; and codon-nonspecific class-II release factors. Termination Release Factor,Factor, Termination Release,Factors, Peptide Termination,Release Factor, Termination,Termination Factors, Peptide
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000072417 Protein Domains Discrete protein structural units that may fold independently of the rest of the protein and have their own functions. Peptide Domain,Protein Domain,Domain, Peptide,Domain, Protein,Domains, Peptide,Domains, Protein,Peptide Domains
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D018388 Codon, Terminator Any codon that signals the termination of genetic translation (TRANSLATION, GENETIC). PEPTIDE TERMINATION FACTORS bind to the stop codon and trigger the hydrolysis of the aminoacyl bond connecting the completed polypeptide to the tRNA. Terminator codons do not specify amino acids. Amber Stop Codon,Codon, Amber Stop,Codon, Ochre Stop,Codon, Opal Stop,Codon, Stop,Stop Codon,Terminator Codon,Amber Codon,Amber Terminator Codon,Codon, Termination,Ochre Codon,Ochre Stop Codon,Opal Codon,Opal Stop Codon,Stop Codon UAA,Stop Codon UAG,Stop Codon UGA,Stop Signal, Translation,TAA Codon,TAG Codon,TGA Codon,UAA Codon,UAA Stop Codon,UAG Codon,UAG Stop Codon,UGA Codon,UGA Stop Codon,Amber Codons,Amber Stop Codons,Amber Terminator Codons,Codon UAA, Stop,Codon UAG, Stop,Codon UGA, Stop,Codon, Amber,Codon, Amber Terminator,Codon, Ochre,Codon, Opal,Codon, TAA,Codon, TAG,Codon, TGA,Codon, UAA,Codon, UAA Stop,Codon, UAG,Codon, UAG Stop,Codon, UGA,Codon, UGA Stop,Codons, Amber,Codons, Amber Stop,Codons, Amber Terminator,Codons, Ochre,Codons, Ochre Stop,Codons, Opal,Codons, Opal Stop,Codons, Stop,Codons, TAA,Codons, TAG,Codons, TGA,Codons, Termination,Codons, Terminator,Codons, UAA,Codons, UAA Stop,Codons, UAG,Codons, UAG Stop,Codons, UGA,Codons, UGA Stop,Ochre Codons,Ochre Stop Codons,Opal Codons,Opal Stop Codons,Stop Codon UGAs,Stop Codon, Amber,Stop Codon, Ochre,Stop Codon, Opal,Stop Codon, UAA,Stop Codon, UAG,Stop Codon, UGA,Stop Codons,Stop Codons, Amber,Stop Codons, Ochre,Stop Codons, Opal,Stop Codons, UAA,Stop Codons, UAG,Stop Codons, UGA,Stop Signals, Translation,TAA Codons,TAG Codons,TGA Codons,Termination Codon,Termination Codons,Terminator Codon, Amber,Terminator Codons,Terminator Codons, Amber,Translation Stop Signal,Translation Stop Signals,UAA Codons,UAA Stop Codons,UAA, Stop Codon,UAG Codons,UAG Stop Codons,UAG, Stop Codon,UGA Codons,UGA Stop Codons,UGA, Stop Codon
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

Adam D Younkin, and Steven T Gregory, and Michael O'Connor
September 1968, Nature,
Adam D Younkin, and Steven T Gregory, and Michael O'Connor
January 1979, Methods in enzymology,
Adam D Younkin, and Steven T Gregory, and Michael O'Connor
March 2018, ACS omega,
Adam D Younkin, and Steven T Gregory, and Michael O'Connor
January 1977, Current topics in microbiology and immunology,
Adam D Younkin, and Steven T Gregory, and Michael O'Connor
March 1977, Antimicrobial agents and chemotherapy,
Adam D Younkin, and Steven T Gregory, and Michael O'Connor
December 1966, Proceedings of the National Academy of Sciences of the United States of America,
Adam D Younkin, and Steven T Gregory, and Michael O'Connor
May 1976, Cell,
Adam D Younkin, and Steven T Gregory, and Michael O'Connor
January 1985, Journal of general microbiology,
Adam D Younkin, and Steven T Gregory, and Michael O'Connor
December 1979, Biochemical and biophysical research communications,
Adam D Younkin, and Steven T Gregory, and Michael O'Connor
November 2022, Seminars in cancer biology,
Copied contents to your clipboard!