Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone. 1988

J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
Nuffield Department of Surgery, University of Oxford, United Kingdom.

Using quantitative techniques we have shown elsewhere that dendritic cells (DC) migrate from blood into the spleen, under the control of T cells. Here we traced the localization of DC within the spleen and sought to explain the means by which they entered. DC were labeled with a fluorochrome, Hoescht 33342, and injected intravenously. Spleens were removed 3 or 24 h later and DC were visualized within particular areas that were defined by mAbs and FITC anti-Igs. At 3 h most DC were in the red pulp, whereas by 24 h the majority had homed to T-dependent areas of the white pulp and may have become interdigitating cells. Lymphoid DC, isolated from spleen and perhaps normally present in blood, may thus be a migratory stage distinct from the relatively fixed interdigitating cells. We also developed a frozen section assay to investigate the interaction of DC with various lymphoid elements. When DC were incubated on sections of spleen, at 37 degrees C but not at 4 degrees C they attached specifically within the marginal zone and did not bind to T areas; in contrast, macrophages attached only to red pulp and T cells did not bind specifically. However, DC did not bind to sections of mesenteric lymph node, whereas T cells localized in particular regions at 4 degrees C but not at 37 degrees C, probably the high endothelial venules. DC may thus express "homing receptors," similar to those of T cells, for certain endothelia. We propose that T cells can modify the vascular endothelium in certain areas to allow egress of DC from the bloodstream.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D001775 Blood Circulation The movement of the BLOOD as it is pumped through the CARDIOVASCULAR SYSTEM. Blood Flow,Circulation, Blood,Blood Flows,Flow, Blood
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
January 1985, Advances in experimental medicine and biology,
J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
September 2012, The Journal of experimental medicine,
J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
February 1999, The Journal of experimental medicine,
J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
February 2009, Proceedings of the National Academy of Sciences of the United States of America,
J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
April 2005, Journal of immunology (Baltimore, Md. : 1950),
J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
January 1992, International review of cytology,
J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
December 1994, Transplantation proceedings,
J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
November 1983, The Journal of experimental medicine,
J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
July 2008, Histology and histopathology,
J M Austyn, and J W Kupiec-Weglinski, and D F Hankins, and P J Morris
May 2013, Journal of autoimmunity,
Copied contents to your clipboard!