Aminoacridines, potent inhibitors of protein kinase C. 1988

Y A Hannun, and R M Bell
Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Acridine orange, acridine yellow G, and related compounds potently inhibited protein kinase C (Ca2+/phospholipid-dependent enzyme) activity and phorbol dibutyrate binding. Inhibition was investigated in vitro using Triton X-100 mixed micellar assays (Hannun, Y. A., Loomis, C. R., and Bell, R. M. (1985) J. Biol. Chem. 260, 10039-10043 and Hannun, Y. A., and Bell, R. M. (1986) J. Biol. Chem. 261, 9341-9347). Inhibition by the acridine derivatives was subject to surface dilution; therefore, the relevant concentration unit is mol % rather than the bulk molar concentration. Fifty percent inhibition of protein kinase C activity occurred at concentrations of these compounds comparable to concentrations of sn-1,2-diacylglycerol (DAG) and phosphatidylserine (PS) required for enzyme activation (i.e. 1-6 mol %). The mechanism of inhibition appeared to be complex: both the catalytic and regulatory sites of protein kinase C were affected. Acridine orange was a competitive inhibitor with respect to MgATP when the catalytic fragment of protein kinase C was employed. Inhibition at the active site was overcome by the addition of Triton X-100 micelles or phospholipid vesicles. When the activity of intact protein kinase C was measured, inhibition was noncompetitive with respect to MgATP. Further kinetic analysis suggested a competitive type of inhibition with respect to PS and DAG implying an interaction of acridine compounds with the regulatory lipid cofactors or with the regulatory domain of protein kinase C. This was further supported by demonstrating inhibition of phorbol dibutyrate binding to both protein kinase C and the lipid-binding domain generated by trypsin hydrolysis. Acridine orange and acridine yellow G also inhibited thrombin-induced 40-kDa phosphorylation in human platelets and phorbol dibutyrate binding to platelets. These effects were also subject to surface dilution. These results suggest that acridine derivatives have multiple interactions with protein kinase C with the predominant effect being inhibition of activation within the regulatory domain of the enzyme. Some of the biologic effects of acridine derivatives including anti-tumor action may occur as a consequence of protein kinase C inhibition.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004075 Diglycerides Glycerides composed of two fatty acids esterified to the trihydric alcohol GLYCEROL. There are two possible forms that exist: 1,2-diacylglycerols and 1,3-diacylglycerols. Diacylglycerol,Diacylglycerols
D000165 Acridine Orange A cationic cytochemical stain specific for cell nuclei, especially DNA. It is used as a supravital stain and in fluorescence cytochemistry. It may cause mutations in microorganisms. Tetramethyl Acridine Diamine,3,6-Bis(dimethylamino)acridine,Acridine Orange Base,Basic Orange 3RN,C.I. 46005,C.I. Basic Orange 14,Euchrysine,N,N,N',N'-Tetramethyl-3,6-Acridinediamine Hydrochloride,Rhoduline Orange,Acridine Diamine, Tetramethyl,Base, Acridine Orange,Diamine, Tetramethyl Acridine,Orange 3RN, Basic,Orange Base, Acridine,Orange, Acridine,Orange, Rhoduline
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000609 Aminoacridines Acridines which are substituted in any position by one or more amino groups or substituted amino groups.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y A Hannun, and R M Bell
December 1989, FEBS letters,
Y A Hannun, and R M Bell
August 1990, Bio/technology (Nature Publishing Company),
Y A Hannun, and R M Bell
May 2018, Journal of medicinal chemistry,
Y A Hannun, and R M Bell
August 1986, The Journal of antibiotics,
Y A Hannun, and R M Bell
January 2002, Current oncology reports,
Y A Hannun, and R M Bell
September 2006, Chemistry, an Asian journal,
Y A Hannun, and R M Bell
November 1994, Cellular signalling,
Y A Hannun, and R M Bell
October 2009, Bioorganic & medicinal chemistry,
Copied contents to your clipboard!