Activation of cannabinoid receptor 2 protects rat hippocampal neurons against Aβ-induced neuronal toxicity. 2020

Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
Department of Physiology, School of Basic Medicine, Institute of Brain Science and Diseases, Qingdao University, Qingdao, 266071, China.

Alzheimer's disease (AD) is a dementing, neurodegenerative disorder characterized by increased accumulation of beta-amyloid peptides (Aβ), degeneration of hippocampal neurons and the gradual development of learning and memory deficits. Therapeutically, there are still no ideal medicines available and this represents an urgent need for the development of new strategies to treat AD. Emerging lines of evidence suggest that modulation of the cannabinoid system exhibits neuroprotective effects in various neurological diseases, including AD. However, a consensus is yet to emerge as to the impact of hippocampal cannabinoid receptor 2 (CB2R) in protection of hippocampal neurons against Aβ induced neuronal toxicity. Here, we report that chronic treatment of primary hippocampal neuronal cultures with 100 nM Aβ1-42 oligomers for 7 days results in neurotoxicity, which includes increases in lactate dehydrogenase (LDH) levels, suggesting an Aβ1-42 -induced neuron apoptosis. Further, chronic Aβ1-42 reduces the ratio of phosphorylated Akt (pAkt)/Akt, in turn decreases neuronal Bcl-2/Bax ratio, and leads to an increase of caspase-3, which likely underlines the signal pathway of chronic Aβ1-42-induced neuron apoptosis. Interestingly, pre-treatments of CB2R agonist (JWH133, 10 μM) with Aβ1-42 prevents Aβ1-42-induced the decrease of pAkt/Akt ratio, the decrease of Bcl-2/Bax ratio, and the increase of caspase-3, and protects hippocampal neurons against Aβ1-42-induced apoptosis. All neuroprotective effects of JWH133 are abolished by a selective CB2R antagonist, AM630. Taken together, the activation of hippocampal CB2Rs protects neurons against Aβ1-42 toxicity, and the CB2R-mediated enhancement of the pAkt signaling is likely involved in the protection of hippocampal neurons against Aβ1-42-induced neuronal toxicity.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002186 Cannabinoids Compounds having the cannabinoid structure. They were originally extracted from Cannabis sativa L. The most pharmacologically active constituents are TETRAHYDROCANNABINOL; CANNABINOL; and CANNABIDIOL. Cannabinoid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D016229 Amyloid beta-Peptides Peptides generated from AMYLOID BETA-PEPTIDES PRECURSOR. An amyloid fibrillar form of these peptides is the major component of amyloid plaques found in individuals with Alzheimer's disease and in aged individuals with trisomy 21 (DOWN SYNDROME). The peptide is found predominantly in the nervous system, but there have been reports of its presence in non-neural tissue. Alzheimer beta-Protein,Amyloid Protein A4,Amyloid beta-Peptide,Amyloid beta-Protein,beta Amyloid,beta-Amyloid Protein,Alzheimer's ABP,Alzheimer's Amyloid Fibril Protein,Amyloid AD-AP,Amyloid Fibril Protein, Alzheimer's,Amyloid beta-Proteins,ABP, Alzheimer's,AD-AP, Amyloid,Alzheimer ABP,Alzheimer beta Protein,Alzheimers ABP,Amyloid AD AP,Amyloid beta Peptide,Amyloid beta Peptides,Amyloid beta Protein,Amyloid beta Proteins,Amyloid, beta,Protein A4, Amyloid,Protein, beta-Amyloid,beta Amyloid Protein,beta-Peptide, Amyloid,beta-Peptides, Amyloid,beta-Protein, Alzheimer,beta-Protein, Amyloid,beta-Proteins, Amyloid
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
January 2011, Journal of Alzheimer's disease : JAD,
Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
June 2019, Molecular medicine reports,
Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
September 2014, Biochimica et biophysica acta,
Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
October 1994, Journal of neurosurgical anesthesiology,
Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
November 2009, Inflammatory bowel diseases,
Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
January 2016, Neural plasticity,
Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
August 2001, Neuroscience letters,
Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
August 2017, Biochemical and biophysical research communications,
Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
July 2001, Neuroreport,
Jingfu Zhao, and Mengzhen Wang, and Wei Liu, and Zegang Ma, and Jie Wu
January 1996, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!