Pharmaco-genetic inhibition of pyramidal neurons retards hippocampal kindling-induced epileptogenesis. 2020

Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

Pharmaco-genetics emerges as a new promising approach for epileptic seizures. Whether it can modulate epileptogenesis is still unknown. Here, parvalbumin neurons and pyramidal neurons of the seizure focus were transfected with engineered excitatory Gq-coupled human muscarinic receptor hM3Dq and engineered inhibitory Gi-coupled human muscarinic receptor hM4Di, respectively. And their therapeutic value in mouse hippocampal kindling-induced epileptogenesis was tested. Pharmaco-genetic activating parvalbumin neurons limitedly retarded the progression of behavioral seizure stage and afterdischarge duration (ADD) during epileptogenesis induced by kindling. Activating parvalbumin neurons delayed seizure development only in the early stage, but accelerated it in late stages. On the contrary, pharmaco-genetic inhibiting pyramidal neurons robustly retarded the progression of seizure stages and ADDs, which greatly delayed seizure development in both early and late stages. Although both pharmaco-genetic therapeutics efficiently alleviated the severity of acute kindling-induced seizures, pharmaco-genetic inhibiting pyramidal neurons were able to reverse the enhanced synaptic plasticity during epileptogenesis, compared with that of pharmaco-genetic activating parvalbumin neurons. Our results demonstrated that pharmaco-genetic inhibiting pyramidal neurons retard hippocampal kindling-induced epileptogenesis and reverse the enhanced synaptic plasticity during epileptogenesis, compared with that of pharmaco-genetic activating parvalbumin neurons. It suggests that pharmaco-genetics targeting pyramidal neurons may be a promising treatment for epileptogenesis.

UI MeSH Term Description Entries
D007696 Kindling, Neurologic The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures. Kindlings, Neurologic,Neurologic Kindling,Neurologic Kindlings
D008297 Male Males
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D003131 Combined Modality Therapy The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used. Multimodal Treatment,Therapy, Combined Modality,Combined Modality Therapies,Modality Therapies, Combined,Modality Therapy, Combined,Multimodal Treatments,Therapies, Combined Modality,Treatment, Multimodal,Treatments, Multimodal
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D012640 Seizures Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include abnormal motor, sensory and psychic phenomena. Recurrent seizures are usually referred to as EPILEPSY or "seizure disorder." Absence Seizure,Absence Seizures,Atonic Absence Seizure,Atonic Seizure,Clonic Seizure,Complex Partial Seizure,Convulsion,Convulsions,Convulsive Seizure,Convulsive Seizures,Epileptic Seizure,Epileptic Seizures,Generalized Absence Seizure,Generalized Tonic-Clonic Seizures,Jacksonian Seizure,Myoclonic Seizure,Non-Epileptic Seizure,Nonepileptic Seizure,Partial Seizure,Seizure,Seizures, Convulsive,Seizures, Focal,Seizures, Generalized,Seizures, Motor,Seizures, Sensory,Tonic Clonic Seizure,Tonic Seizure,Tonic-Clonic Seizure,Atonic Absence Seizures,Atonic Seizures,Clonic Seizures,Complex Partial Seizures,Convulsion, Non-Epileptic,Generalized Absence Seizures,Myoclonic Seizures,Non-Epileptic Seizures,Nonepileptic Seizures,Partial Seizures,Petit Mal Convulsion,Seizures, Auditory,Seizures, Clonic,Seizures, Epileptic,Seizures, Gustatory,Seizures, Olfactory,Seizures, Somatosensory,Seizures, Tonic,Seizures, Tonic-Clonic,Seizures, Vertiginous,Seizures, Vestibular,Seizures, Visual,Single Seizure,Tonic Seizures,Tonic-Clonic Seizures,Absence Seizure, Atonic,Absence Seizure, Generalized,Absence Seizures, Atonic,Absence Seizures, Generalized,Auditory Seizure,Auditory Seizures,Clonic Seizure, Tonic,Clonic Seizures, Tonic,Convulsion, Non Epileptic,Convulsion, Petit Mal,Convulsions, Non-Epileptic,Focal Seizure,Focal Seizures,Generalized Seizure,Generalized Seizures,Generalized Tonic Clonic Seizures,Generalized Tonic-Clonic Seizure,Gustatory Seizure,Gustatory Seizures,Motor Seizure,Motor Seizures,Non Epileptic Seizure,Non Epileptic Seizures,Non-Epileptic Convulsion,Non-Epileptic Convulsions,Olfactory Seizure,Olfactory Seizures,Partial Seizure, Complex,Partial Seizures, Complex,Seizure, Absence,Seizure, Atonic,Seizure, Atonic Absence,Seizure, Auditory,Seizure, Clonic,Seizure, Complex Partial,Seizure, Convulsive,Seizure, Epileptic,Seizure, Focal,Seizure, Generalized,Seizure, Generalized Absence,Seizure, Generalized Tonic-Clonic,Seizure, Gustatory,Seizure, Jacksonian,Seizure, Motor,Seizure, Myoclonic,Seizure, Non-Epileptic,Seizure, Nonepileptic,Seizure, Olfactory,Seizure, Partial,Seizure, Sensory,Seizure, Single,Seizure, Somatosensory,Seizure, Tonic,Seizure, Tonic Clonic,Seizure, Tonic-Clonic,Seizure, Vertiginous,Seizure, Vestibular,Seizure, Visual,Seizures, Generalized Tonic-Clonic,Seizures, Nonepileptic,Sensory Seizure,Sensory Seizures,Single Seizures,Somatosensory Seizure,Somatosensory Seizures,Tonic Clonic Seizures,Tonic-Clonic Seizure, Generalized,Tonic-Clonic Seizures, Generalized,Vertiginous Seizure,Vertiginous Seizures,Vestibular Seizure,Vestibular Seizures,Visual Seizure,Visual Seizures
D015202 Protein Engineering Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes. Genetic Engineering of Proteins,Genetic Engineering, Protein,Proteins, Genetic Engineering,Engineering, Protein,Engineering, Protein Genetic,Protein Genetic Engineering

Related Publications

Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
July 1992, Neuroscience,
Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
September 1999, Journal of neurophysiology,
Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
January 1991, Neuroscience,
Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
September 2018, Brain research,
Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
July 1985, Canadian journal of physiology and pharmacology,
Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
August 1995, Neuroscience,
Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
May 1997, Neuroreport,
Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
June 2001, The Journal of physiology,
Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
January 2001, Neuroscience,
Li-Ying Chen, and Jiao Liang, and Fan Fei, and Ye-Ping Ruan, and He-Ming Cheng, and Yi Wang, and Zhong Chen, and Ceng-Lin Xu
February 1984, Brain research,
Copied contents to your clipboard!