Potassium-induced release of endothelium-derived relaxing factor from canine femoral arteries. 1988

G M Rubanyi, and P M Vanhoutte
Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota.

Experiments were designed in a bioassay system to analyze the effect of elevated (from 5.9 mM to 7.5-45.9 mM) extracellular K+ concentration on the release of endothelium-derived relaxing factor. Segments of canine femoral artery with endothelium (donor segment) were mounted in an organ bath and perfused with modified Krebs-Ringer bicarbonate solution; the effluent from the donor segment was used to superfuse a canine coronary artery ring without endothelium (bioassay tissue). Elevation of perfusate K+ concentration by 1.6-15 mM by intraluminal infusion of potassium chloride upstream of the donor segment evoked further contractions of bioassay rings contracted with prostaglandin F2 alpha. In contrast, the bioassay rings progressively relaxed when increasing concentrations of potassium chloride (10-40 mM) were added extraluminally to the organ bath where the perfused segment was mounted. Extraluminal application of phenylephrine or prostaglandin F2 alpha did not evoke relaxations in the bioassay ring. Removal of the endothelium from the donor segment or selective exposure of the segment (but not the bioassay ring) to Ca2+-deficient solution prevented the K+-induced relaxations. Treatment of the donor segment and the bioassay ring with inhibitors of known endogenous vasoactive substances (acetylcholine, norepinephrine, adenine nucleotides, and prostanoids) had no significant effect on the relaxation of the bioassay ring evoked by extraluminal application of potassium chloride. Simultaneous measurements of changes in isometric force in the donor segment and bioassay ring revealed that extraluminal elevation of K+ concentration relaxed the segments as well and that the relaxations could not be prevented by simultaneous intraluminal infusion of potassium chloride.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011460 Prostaglandins F (9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics. PGF
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005263 Femoral Artery The main artery of the thigh, a continuation of the external iliac artery. Common Femoral Artery,Arteries, Common Femoral,Arteries, Femoral,Artery, Common Femoral,Artery, Femoral,Common Femoral Arteries,Femoral Arteries,Femoral Arteries, Common,Femoral Artery, Common

Related Publications

G M Rubanyi, and P M Vanhoutte
July 1989, The American journal of physiology,
G M Rubanyi, and P M Vanhoutte
November 1986, European journal of pharmacology,
G M Rubanyi, and P M Vanhoutte
June 1992, Kidney international. Supplement,
G M Rubanyi, and P M Vanhoutte
March 1995, Canadian journal of physiology and pharmacology,
G M Rubanyi, and P M Vanhoutte
December 1985, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
G M Rubanyi, and P M Vanhoutte
April 1990, European journal of pharmacology,
G M Rubanyi, and P M Vanhoutte
August 1990, Journal of cardiovascular pharmacology,
G M Rubanyi, and P M Vanhoutte
April 1991, The American journal of physiology,
G M Rubanyi, and P M Vanhoutte
September 1992, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!