Speedy/RINGO protein interacts with ERK/MAPK and PI3K/AKT pathways in SH-SY5Y neuroblastoma cells. 2020

Yesim Kaya, and Seren Kucukvardar, and Aysegul Yildiz
Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey.

Abnormal activity of ERK/MAPK and PI3K/AKT pathways is one of the most important factors for the development of many cancer types including neuroblastoma cancer. Apart from these two pathways, some cell cycle regulators such as Speedy/RINGO also contribute to neuroblastoma development. There is data reinforcing the possible communication of the components of ERK/MAPK and PI3K/AKT pathways in carcinogenic process. In addition to this, there are studies about the direct/indirect interaction of Speedy/RINGO with these pathways in different cell types other than neuroblastoma. However, there is not any study available showing the interaction of Speedy/RINGO with both pathways in neuroblastoma cells. Therefore, the aim of this study is to determine the possible effect of Speedy/RINGO on PI3K/AKT and ERK/MAPK pathways in SH-SY5Y neuroblastoma cells. For this aim, Speedy/RINGO was silenced by siRNA technique to analyze the effects of direct inhibition of Speedy/RINGO on these pathways. Results showed that Speedy/RINGO silencing caused a significant decrease in MEK1/2 expression and AKT phosphorylation. Afterward, MEK1/2 was inhibited using a specific inhibitor U0126. Data reveal a corresponding decrease in the Speedy/RINGO expression and AKT phosphorylation indicating a reciprocal interaction between ERK/MAPK and Speedy/RINGO. In addition, MTS analysis showed that both ERK/MAPK inhibition and Speedy/RINGO silencing significantly reduced the viability of SH-SY5Y cells. This study provides information about a possible interaction of Speedy/RINGO with PI3K/AKT and ERK/MAPK pathways in SH-SY5Y cells for the first time. It will not only help to better understand the cancer-prone interactions of these pathways but also enable us to identify the appropriate molecular targets for developing efficient treatment strategies.

UI MeSH Term Description Entries
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D018797 Cell Cycle Proteins Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS. Cell Division Cycle Proteins,Cell-Cycle Regulatory Proteins,cdc Proteins,Cell Cycle Regulatory Proteins
D019869 Phosphatidylinositol 3-Kinases Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell. PI-3 Kinase,Phosphatidylinositol-3-OH Kinase,PtdIns 3-Kinase,PI 3-Kinase,PI-3K,PI3 Kinases,PI3-Kinase,Phosphoinositide 3 Kinases,Phosphoinositide 3-Hydroxykinase,PtdIns 3-Kinases,3-Hydroxykinase, Phosphoinositide,Kinase, PI-3,Kinase, Phosphatidylinositol-3-OH,Kinases, PI3,Kinases, Phosphoinositide 3,PI 3 Kinase,PI3 Kinase,Phosphatidylinositol 3 Kinases,Phosphatidylinositol 3 OH Kinase,Phosphoinositide 3 Hydroxykinase,PtdIns 3 Kinase,PtdIns 3 Kinases
D020935 MAP Kinase Signaling System An intracellular signaling system involving the mitogen-activated protein kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade. MAP Kinase Cascade,MAP Kinase Module,MAP Kinase Signaling Cascade,MAP Kinase Signaling Pathway,MAP Kinase Signaling Pathways,ERK Pathway,ERK Signal Tranduction Pathway,ERK1 and ERK2 Pathway,ERK1-2 Pathway,JNK Pathway,JNK Signaling Pathway,MAP Kinase Modules,MAP Kinase Signaling Cascades,MEK-ERK Pathway,p38 Kinase Pathway,p38 Kinase Signaling Pathway,Cascade, MAP Kinase,ERK Pathways,ERK1 2 Pathway,ERK1-2 Pathways,JNK Pathways,JNK Signaling Pathways,Kinase Cascade, MAP,Kinase Pathway, p38,Kinase Pathways, p38,MAP Kinase Cascades,MEK ERK Pathway,MEK-ERK Pathways,Module, MAP Kinase,Pathway, ERK,Pathway, ERK1-2,Pathway, JNK,Pathway, JNK Signaling,Pathway, MEK-ERK,Pathway, p38 Kinase,Pathways, ERK,Pathways, ERK1-2,Pathways, JNK,Pathways, JNK Signaling,Pathways, MEK-ERK,Pathways, p38 Kinase,Signaling Pathway, JNK,Signaling Pathways, JNK,p38 Kinase Pathways

Related Publications

Yesim Kaya, and Seren Kucukvardar, and Aysegul Yildiz
July 2020, Medical oncology (Northwood, London, England),
Yesim Kaya, and Seren Kucukvardar, and Aysegul Yildiz
August 2009, Neurochemical research,
Yesim Kaya, and Seren Kucukvardar, and Aysegul Yildiz
October 2020, Oncology letters,
Yesim Kaya, and Seren Kucukvardar, and Aysegul Yildiz
September 2009, Expert opinion on therapeutic targets,
Yesim Kaya, and Seren Kucukvardar, and Aysegul Yildiz
June 2021, Heliyon,
Yesim Kaya, and Seren Kucukvardar, and Aysegul Yildiz
March 2020, International journal of oncology,
Yesim Kaya, and Seren Kucukvardar, and Aysegul Yildiz
January 2017, Oxidative medicine and cellular longevity,
Yesim Kaya, and Seren Kucukvardar, and Aysegul Yildiz
February 2022, Oral surgery, oral medicine, oral pathology and oral radiology,
Copied contents to your clipboard!