IL-1 inhibits B cell differentiation in long term bone marrow cultures. 1988

K Dorshkind
Division of Biomedical Sciences, University of California, Riverside 92521.

There is evidence that stromal cells are responsive to changes in their external milieu and that this can affect their function. IL-1 has been identified as one mediator that can affect stromal cells by increasing their secretion of CSF. The monokine has also been reported to be a B cell differentiation factor. The purpose of this study was to test the effects of IL-1 on the pattern of hemopoietic cell differentiation by adding IL-1 alpha to myeloid long term bone marrow cultures (MBMC) at the time of their transfer to lymphoid bone marrow culture conditions. This usually results in the cessation of myelopoiesis and the induction of B lymphopoiesis. The addition of 50 U/ml of rIL-1 alpha, but not 10 U/ml, to MBMC at the time of their transfer to lymphoid conditions resulted in a complete inhibition of B cell differentiation and sustained myelopoiesis. To determine whether adherent layer cells contributed to this effect, conditioned medium (CM) was collected from adherent layers treated previously with the antibiotic mycophenolic acid. This depletes the hemopoietic cells from the cultures and retains a purified population of stromal cells. CM from mycophenolic acid- treated adherent layers exposed for 24 h to 50 U/ml of IL-1 was added at volume concentrations of 5, 10, and 25% to MBMC at the time of transfer to lymphoid bone marrow culture conditions and at each feeding thereafter. Expression of the B lineage associated 14.8 Ag and IgM was inhibited on a dose dependent basis, and myelopoiesis was sustained in cultures to which 25% CM had been added. Induction of B lymphopoiesis occurred in cultures to which adherent cell CM not exposed to IL-1 had been added. The CM from the IL-1-treated adherent cells contained CSF, because it promoted the growth of myeloid colonies from fresh marrow or MBMC cells and stimulated the granulocyte-macrophage-CSF sensitive FDC-P1 cell line to proliferate. IL-3 was not present in the CM, because stimulation of the IL-3 sensitive 32D cell line was not observed. The CM from the IL-1-treated adherent cells stimulated thymocytes to proliferate in the presence of PHA. This raised the possibility that the induced CSF may have required IL-1 to mediate their effects in the cultures. However, B lymphopoiesis was inhibited and myelopoiesis maintained upon addition of recombinant granulocyte-, macrophage-, and granulocyte-macrophage-CSF to cultures, indicating that IL-1 or other non-CSF molecules induced by it need not be present.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer

Related Publications

K Dorshkind
January 1989, Growth factors (Chur, Switzerland),
K Dorshkind
January 1991, Biotechnology (Reading, Mass.),
K Dorshkind
February 1980, Journal of immunology (Baltimore, Md. : 1950),
K Dorshkind
January 1984, Bibliotheca haematologica,
K Dorshkind
July 1980, Blood,
K Dorshkind
July 1995, British journal of haematology,
K Dorshkind
June 1987, Journal of immunological methods,
Copied contents to your clipboard!