Multi and transgenerational epigenetic effects of di-(2-ethylhexyl) phthalate (DEHP) in liver. 2020

Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA.

Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous industrial pollutant, is a known endocrine disrupter implicated in metabolic diseases. Prenatal DEHP exposure promotes epigenetic multi- and transgenerational inheritance of adult onset disease in subsequent generations (F1-F3). However, the epigenetic toxicity is less understood in the liver. In this study, CD-1 mice were prenatally exposed to 20 μg/kg/day, 200 μg/kg/day, 500 mg/kg/day, or 750 mg/kg/day DEHP from gestational day (GD) 10.5 until birth of pups. Following prenatal exposure, the multigenerational and transgenerational effects of mRNA expression of epigenetic regulators were evaluated in F1, F2, and F3 generation mouse livers at postnatal days (PNDs) 8 and 60. Results showed that DEHP exposed mice livers exhibited significant changes in global DNA methylation levels in all three generations, with the effect being different in F2 after high dosage exposure. Histopathology indicated that DEHP exposure could induce mild damage in F1 livers. The expression levels of DNA methyltransferase 1 (Dnmt1) were significantly changed in both the F1 and F2 generations at PND 8, suggesting that maintenance Dnmt1 plays a major role in the multigenerational effect that occur in the early developmental stages. Additionally, DEHP exposure caused significant changes in ten-eleven translocation methylcytosine (Tet) dioxygenases encoding Tet1 expression in all three generations and Tet2 expression in F3 at PND 60, implicating their contributions in inducing both multi- and transgenerational effects after DEHP exposure in mouse liver. Overall, our results establish that prenatal and ancestral DEHP exposure are critical for epigenetic regulation of DNA methylation in female mouse livers.

UI MeSH Term Description Entries
D008297 Male Males
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011297 Prenatal Exposure Delayed Effects The consequences of exposing the FETUS in utero to certain factors, such as NUTRITION PHYSIOLOGICAL PHENOMENA; PHYSIOLOGICAL STRESS; DRUGS; RADIATION; and other physical or chemical factors. These consequences are observed later in the offspring after BIRTH. Delayed Effects, Prenatal Exposure,Late Effects, Prenatal Exposure
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D004051 Diethylhexyl Phthalate An ester of phthalic acid. It appears as a light-colored, odorless liquid and is used as a plasticizer for many resins and elastomers. Dioctyl Phthalate,Bis(2-ethylhexyl)phthalate,DEHP,Di(2-ethylhexyl)phthalate,Di-2-Ethylhexylphthalate,Di 2 Ethylhexylphthalate,Phthalate, Diethylhexyl,Phthalate, Dioctyl
D004248 DNA (Cytosine-5-)-Methyltransferases Enzymes that catalyzes the transfer of a methyl group from S-ADENOSYLMETHIONINE to the 5-position of CYTOSINE residues in DNA. DNA (Cytosine-5-)-Methyltransferase,DNA Cytosine-5-Methylase,DNA (Cytosine 5) Methyltransferase,Cytosine-5-Methylase, DNA,DNA Cytosine 5 Methylase
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
September 2015, Endocrinology,
Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
April 2004, The journal of pediatric pharmacology and therapeutics : JPPT : the official journal of PPAG,
Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
June 1980, Environmental research,
Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
March 2007, Journal of toxicology and environmental health. Part A,
Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
March 2020, Development & reproduction,
Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
January 2017, PloS one,
Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
January 1985, Industrial health,
Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
January 2014, Toxicology letters,
Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
January 1980, Toxicology,
Yi Wen, and Saniya Rattan, and Jodi A Flaws, and Joseph Irudayaraj
November 1982, Environmental health perspectives,
Copied contents to your clipboard!