Early induction by crotoxin of biphasic frequency changes and giant miniature endplate potentials in frog muscle. 1988

B J Hawgood, and I C Smith, and P N Strong
Department of Physiology, King's College London.

1. Following the addition of crotoxin (250 nM) at the frog neuromuscular junction, there was an initial fall in frequency of miniature endplate potentials (m.e.p.ps), followed by a secondary rise which was characterized by the appearance of large spontaneous potentials (giants, g.m.e.p.ps) and an occasional large potential of the burst type. 2. In the presence of 2-(4-phenylpiperidino)cyclohexanol (AH5183, vesicamol), an inhibitor of vesicular acetylcholine uptake, the frequency of g.m.e.p.ps induced by crotoxin was reduced. 3. The characteristic changes in m.e.p.p. frequency and amplitude distribution were absent with crotoxin in Sr-EGTA Ringer. In the presence of high concentrations of Mn (3.6 or 5.4 mM with 0.9 mM Ca), the crotoxin-induced initial fall and the onset of the secondary rise in m.e.p.p. and g.m.e.p.p. frequencies were slower. The timing of these phases was unaffected by Ca concentrations ranging from 6.3 to 0.9 mM. 4. High concentrations of Mn ions partially inhibited the phospholipase A2 activity of crotoxin on artificial phospholipid membranes. This also supports the involvement of the Ca-dependent phospholipase A2 subunit in both phases of the physiological action of the toxin. 5. G.m.e.p.ps were associated with a moderate increase in m.e.p.p. frequency (2-3 s-1) and were of a time-course similar to that of m.e.p.ps. They persisted after washing with medium lacking Ca ions and in the presence of Ca-Mn Ringer that blocked evoked responses. 6. It is concluded that crotoxin, acting through its phospholipase A2 subunit, produces specific disturbances of synaptic exocytosis and vesicle formation in the axolemma of the motor nerve terminal which lead to biphasic changes in m.e.p.p. frequency and the onset of large spontaneous potentials.

UI MeSH Term Description Entries
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010622 Phencyclidine A hallucinogen formerly used as a veterinary anesthetic, and briefly as a general anesthetic for humans. Phencyclidine is similar to KETAMINE in structure and in many of its effects. Like ketamine, it can produce a dissociative state. It exerts its pharmacological action through inhibition of NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE). As a drug of abuse, it is known as PCP and Angel Dust. 1-(1-Phenylcyclohexyl)piperidine,Angel Dust,CL-395,GP-121,Phencyclidine Hydrobromide,Phencyclidine Hydrochloride,Sernyl,Serylan,CL 395,CL395,Dust, Angel,GP 121,GP121
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D010880 Piperidines A family of hexahydropyridines.
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion

Related Publications

B J Hawgood, and I C Smith, and P N Strong
March 1973, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
B J Hawgood, and I C Smith, and P N Strong
January 2015, Neuroscience letters,
B J Hawgood, and I C Smith, and P N Strong
June 1982, Acta physiologica Scandinavica,
B J Hawgood, and I C Smith, and P N Strong
July 1972, The International journal of neuroscience,
B J Hawgood, and I C Smith, and P N Strong
July 1974, The Journal of general physiology,
B J Hawgood, and I C Smith, and P N Strong
May 1955, The Journal of physiology,
B J Hawgood, and I C Smith, and P N Strong
January 1971, Biofizika,
B J Hawgood, and I C Smith, and P N Strong
December 1991, British journal of pharmacology,
Copied contents to your clipboard!