Motor nerve terminal sprouting in formamide-treated inactive amphibian skeletal muscle. 1988

M M Wines, and M S Letinsky
Department of Physiology, University of California, Los Angeles 90024-1751.

Motor axons can form sprouts from their terminal arborizations in response to partial denervation, and when exposed to pharmacological blocking agents like TTX, botulinum toxins alpha-bungarotoxin, or curare. Each of these experimental procedures has cessation of muscle contractile activity as a common feature. We tested the specific role of muscle fiber inactivity in regulating nerve terminal sprouting by chronically treating adult frog (Rana pipiens) cutaneous pectoris muscles with formamide. Exposure to formamide, unlike the other compounds used to study sprouting, selectively inhibits muscle contractions without blocking pre- or postsynaptic transmission or muscle fiber action potentials. Repeated formamide applications were used to achieve chronic block of muscle contractile activity in vivo for up to 6 weeks. Motor axons in formamide-treated inactive muscle sprouted only from their terminal arborizations, but not from nodes of Ranvier. The onset of this sprouting was protracted compared with that seen in pharmacologically blocked mammalian muscles, and sprouts in formamide-treated muscles were more complex and ornate. The frequency of sprouting terminals was less in these formamide-treated muscles than that seen after alternate methods of contractile block, and this suggests that contractile inactivity alone serves as only a moderate cue for sprouting. The possibility is discussed that the prolific sprouting seen following neurotoxin administration may, in fact, be due to perturbations in synaptic transmission or muscle electrical activity rather than muscle fiber inactivity.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D005559 Formamides A group of amides with the general formula of R-CONH2.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M M Wines, and M S Letinsky
May 1996, Neuromuscular disorders : NMD,
M M Wines, and M S Letinsky
January 1981, Annual review of neuroscience,
M M Wines, and M S Letinsky
October 1981, Quarterly journal of experimental physiology (Cambridge, England),
M M Wines, and M S Letinsky
February 1980, Science (New York, N.Y.),
M M Wines, and M S Letinsky
October 1977, The Journal of physiology,
M M Wines, and M S Letinsky
January 1988, Electromyography and clinical neurophysiology,
M M Wines, and M S Letinsky
May 1990, Investigative ophthalmology & visual science,
M M Wines, and M S Letinsky
July 1979, Brain research,
M M Wines, and M S Letinsky
July 1983, Journal of ultrastructure research,
Copied contents to your clipboard!