N-acetylcysteine prevents verapamil-induced cardiotoxicity with no effect on the noradrenergic arch-associated neurons in zebrafish. 2020

Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.

There is a strong association between calcium channel blockers (CCBs) and heart failure. CCB toxicity is very common due to overdose and underlying medical conditions. CCBs also have been shown to affect the nervous system. Recently, we demonstrated that the antioxidant N-acetylcysteine (NAC) prevented ketamine-induced cardiotoxicity, developmental toxicity and neurotoxicity. Functionally, we attributed NAC's beneficial effect to its ability to increase cellular calcium. Here, we hypothesized that if there was an involvement of calcium in NAC's preventative effects on ketamine toxicity, NAC might also ameliorate toxicities induced by verapamil, an L-type CCB used to treat hypertension. Using zebrafish embryos, we show that in the absence of NAC, verapamil (up to 100 μM) dose-dependently reduced heart rate and those effects were prevented by NAC co-treatment. Furthermore, a 2-h treatment with NAC rescued reduction of heart rate induced by pre-treatment of 50 and 100 μM of verapamil for 18 h. Verapamil up to 100 μM and NAC up to 1.5 mM did not have any adverse effects on the expression of tyrosine hydroxylase in the noradrenergic neurons of the arch-associated cluster (AAC) located near the heart. NAC did not change cysteine levels in the embryos suggesting that the beneficial effect of NAC on verapamil toxicity may not involve its antioxidant property. In our search for compounds that can prevent CCB toxicity, this study, for the first time, demonstrates protective effects of NAC against verapamil's adverse effects on the heart.

UI MeSH Term Description Entries
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000111 Acetylcysteine The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates. Mercapturic Acid,Acemuc,Acetabs,Acetylcystein AL,Acetylcystein Atid,Acetylcystein Heumann,Acetylcystein Trom,Acetylcysteine Hydrochloride,Acetylcysteine Sodium,Acetylcysteine Zinc,Acetylcysteine, (D)-Isomer,Acetylcysteine, (DL)-Isomer,Acetylcysteine, Monoammonium Salt,Acetylcysteine, Monosodium Salt,Acetylin,Acetyst,Acétylcystéine GNR,Airbron,Alveolex,Azubronchin,Bisolvon NAC,Bromuc,Broncho-Fips,Broncholysin,Broncoclar,Codotussyl,Cystamucil,Dampo Mucopect,Eurespiran,Exomuc,Fabrol,Fluimucil,Fluprowit,Frekatuss,Genac,Hoestil,Ilube,Jenacystein,Jenapharm,Lantamed,Larylin NAC,Lindocetyl,M-Pectil,Muciteran,Muco Sanigen,Mucomyst,Mucosil,Mucosol,Mucosolvin,N-Acetyl-L-cysteine,N-Acetylcysteine,NAC AL,NAC Zambon,Optipect Hustengetränk,Siccoral,Siran,Solmucol,acebraus,durabronchal,mentopin Acetylcystein,Acetylcystein, mentopin,Acid, Mercapturic,Broncho Fips,BronchoFips,Hustengetränk, Optipect,Hydrochloride, Acetylcysteine,M Pectil,MPectil,Monoammonium Salt Acetylcysteine,Monosodium Salt Acetylcysteine,Mucopect, Dampo,N Acetyl L cysteine,N Acetylcysteine,NAC, Bisolvon,Sanigen, Muco,Sodium, Acetylcysteine,Zambon, NAC,Zinc, Acetylcysteine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D014700 Verapamil A calcium channel blocker that is a class IV anti-arrhythmia agent. Iproveratril,Calan,Cordilox,Dexverapamil,Falicard,Finoptin,Isoptin,Isoptine,Izoptin,Lekoptin,Verapamil Hydrochloride,Hydrochloride, Verapamil
D015027 Zebrafish An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra

Related Publications

Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
June 2013, Human & experimental toxicology,
Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
December 2015, Pharmacology, biochemistry, and behavior,
Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
August 2018, Neuroscience letters,
Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
September 2015, Environmental toxicology and pharmacology,
Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
January 1989, Pharmacological research,
Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
January 2019, Bratislavske lekarske listy,
Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
November 2020, Scientific reports,
Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
March 2011, Annals of neurology,
Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
January 1992, Canadian journal of physiology and pharmacology,
Qiang Gu, and Jenna Rodgers, and Bonnie Robinson, and Jyotshna Kanungo
April 2008, British journal of pharmacology,
Copied contents to your clipboard!