Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. 1988

U Dührsen, and J L Villeval, and J Boyd, and G Kannourakis, and G Morstyn, and D Metcalf
Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia.

Hematopoietic progenitor cell levels were monitored in the peripheral blood and bone marrow of 30 cancer patients receiving recombinant human granulocyte-colony stimulating-factor (rG-CSF) in a phase I/II clinical trial. The absolute number of circulating progenitor cells of granulocyte-macrophage, erythroid, and megakaryocyte lineages showed a dose-related increase up to 100-fold after four days of treatment with rG-CSF and often remained elevated two days after the cessation of therapy. The relative frequency of different types of progenitor cells in peripheral blood remained unchanged. The frequency of progenitor cells in the marrow was variable after rG-CSF treatment but in most patients was slightly decreased. The responsiveness of bone marrow progenitor cells to stimulation in vitro by rG-CSF and granulocyte-macrophage colony-stimulating factor did not change significantly during rG-CSF treatment. In patients nine days after treatment with melphalan and then rG-CSF, progenitor cell levels were very low with doses of rG-CSF at or below 10 micrograms/kg/d, but equaled or exceeded pretreatment values when 30 or 60 micrograms/kg/d of rG-CSF was given.

UI MeSH Term Description Entries
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D007963 Leukocytes, Mononuclear Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules. Mononuclear Leukocyte,Mononuclear Leukocytes,PBMC Peripheral Blood Mononuclear Cells,Peripheral Blood Human Mononuclear Cells,Peripheral Blood Mononuclear Cell,Peripheral Blood Mononuclear Cells,Leukocyte, Mononuclear
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008558 Melphalan An alkylating nitrogen mustard that is used as an antineoplastic in the form of the levo isomer - MELPHALAN, the racemic mixture - MERPHALAN, and the dextro isomer - MEDPHALAN; toxic to bone marrow, but little vesicant action; potential carcinogen. Medphalan,Merphalan,Phenylalanine Mustard,Sarcolysine,Sarkolysin,4-(Bis(2-chloroethyl)amino)phenylalanine,Alkeran,L-PAM,Mustard, Phenylalanine
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer

Related Publications

U Dührsen, and J L Villeval, and J Boyd, and G Kannourakis, and G Morstyn, and D Metcalf
January 1987, Haematology and blood transfusion,
U Dührsen, and J L Villeval, and J Boyd, and G Kannourakis, and G Morstyn, and D Metcalf
September 1993, Stem cells (Dayton, Ohio),
U Dührsen, and J L Villeval, and J Boyd, and G Kannourakis, and G Morstyn, and D Metcalf
January 1992, Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie,
U Dührsen, and J L Villeval, and J Boyd, and G Kannourakis, and G Morstyn, and D Metcalf
April 1999, Experimental hematology,
U Dührsen, and J L Villeval, and J Boyd, and G Kannourakis, and G Morstyn, and D Metcalf
July 2009, Immunology and cell biology,
U Dührsen, and J L Villeval, and J Boyd, and G Kannourakis, and G Morstyn, and D Metcalf
September 2004, Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA,
U Dührsen, and J L Villeval, and J Boyd, and G Kannourakis, and G Morstyn, and D Metcalf
September 1989, Experimental hematology,
U Dührsen, and J L Villeval, and J Boyd, and G Kannourakis, and G Morstyn, and D Metcalf
April 1986, Science (New York, N.Y.),
U Dührsen, and J L Villeval, and J Boyd, and G Kannourakis, and G Morstyn, and D Metcalf
August 1988, Behring Institute Mitteilungen,
Copied contents to your clipboard!