Arachidonic acid promotes the binding of 5-lipoxygenase on nanodiscs containing 5-lipoxygenase activating protein in the absence of calcium-ions. 2020

Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.

Among the first steps in inflammation is the conversion of arachidonic acid (AA) stored in the cell membranes into leukotrienes. This occurs mainly in leukocytes and depends on the interaction of two proteins: 5-lipoxygenase (5LO), stored away from the nuclear membranes until use and 5-lipoxygenase activating protein (FLAP), a transmembrane, homotrimeric protein, constitutively present in nuclear membrane. We could earlier visualize the binding of 5LO to nanodiscs in the presence of Ca2+-ions by the use of transmission electron microscopy (TEM) on samples negatively stained by sodium phosphotungstate. In the absence of Ca2+-ions 5LO did not bind to the membrane. In the present communication, FLAP reconstituted in the nanodiscs which could be purified if the His-tag was located on the FLAP C-terminus but not the N-terminus. Our aim was to find out if 1) 5LO would bind in a Ca2+-dependent manner also when FLAP is present? 2) Would the substrate (AA) have effects on 5LO binding to FLAP-nanodiscs? TEM was used to assess the complex formation between 5LO and FLAP-nanodiscs along with, sucrose gradient purification, gel-electrophoresis and mass spectrometry. It was found that presence of AA by itself induces complex formation in the absence of added calcium. This finding corroborates that AA is necessary for the complex formation and that a Ca2+-flush is mainly needed for the recruitment of 5LO to the membrane. Our results also showed that the addition of Ca2+-ions promoted binding of 5LO on the FLAP-nanodiscs as was also the case for nanodiscs without FLAP incorporated. In the absence of added substances no 5LO-FLAP complex was formed. Another finding is that the formation of a 5LO-FLAP complex appears to induce fragmentation of 5LO in vitro.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001094 Arachidonate 5-Lipoxygenase An enzyme that catalyzes the oxidation of arachidonic acid to yield 5-hydroperoxyarachidonate (5-HPETE) which is rapidly converted by a peroxidase to 5-hydroxy-6,8,11,14-eicosatetraenoate (5-HETE). The 5-hydroperoxides are preferentially formed in leukocytes. 5-Lipoxygenase,Arachidonic Acid 5-Lipoxygenase,LTA4 Synthase,Leukotriene A Synthase,Leukotriene A4 Synthase,Leukotriene A4 Synthetase,5 Lipoxygenase,5-Lipoxygenase, Arachidonate,5-Lipoxygenase, Arachidonic Acid,Arachidonate 5 Lipoxygenase,Arachidonic Acid 5 Lipoxygenase,Synthase, LTA4,Synthase, Leukotriene A,Synthase, Leukotriene A4,Synthetase, Leukotriene A4
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose

Related Publications

Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
July 1993, European journal of biochemistry,
Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
March 1993, FEBS letters,
Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
January 2016, PloS one,
Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
May 1992, Molecular pharmacology,
Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
October 1995, Journal of lipid mediators and cell signalling,
Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
January 1997, Advances in experimental medicine and biology,
Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
April 2002, The Journal of biological chemistry,
Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
January 1993, Journal of lipid mediators,
Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
January 2002, Advances in experimental medicine and biology,
Ramakrishnan B Kumar, and Pasi Purhonen, and Hans Hebert, and Caroline Jegerschöld
January 1999, Clinical reviews in allergy & immunology,
Copied contents to your clipboard!