Clonal analysis of human T cell activation by the Mycoplasma arthritidis mitogen (MAS). 1988

M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
Department of Medical Microbiology and Immunology, University of Ulm, FRG.

Mycoplasma arthritidis produces an as yet undefined soluble molecule (MAS) that has a potent mitogenic effect on T cells of several species. We have used cloned human cytotoxic and proliferative T lymphocytes to dissect the molecular mechanism of T cell activation by this mitogen. Reactivity to MAS is clonally expressed among T cell receptor (TcR) alpha/beta chain-expressing T cell clones of CD4+ or CD8+ phenotype, as well as CD4-8- TcR alpha/beta chain-negative T lymphocyte clones expressing the CD3-associated TcR gamma chain. MAS is able to induce cytotoxicity and/or proliferation in these T cell clones. For triggering of these T cells, regardless of their phenotype of specificity, the presence of autologous, allogeneic or xenogeneic major histocompatibility complex (MHC) class II molecules on accessory cells or target cells is necessary. However, T cells do not immunologically recognize MAS on class II molecules, since a direct action of MAS on the T cells themselves can be demonstrated. Triggering of T cells by MAS can be blocked by monoclonal antibodies against CD2, CD3 and the TcR alpha/beta chain dimer. We discuss as a possible explanation that MAS is a functionally bivalent molecule cross-linking TcR and MHC class II molecules. Thus, the mechanism of T cell activation by MAS has striking similarities to the mechanisms by which Staphylococcal enterotoxins activate T cells. It is intriguing that a similar mitogenic principle has been developed by two evolutionary distinct pathogenic microorganisms.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009174 Mycoplasma A genus of gram-negative, mostly facultatively anaerobic bacteria in the family MYCOPLASMATACEAE. The cells are bounded by a PLASMA MEMBRANE and lack a true CELL WALL. Its organisms are pathogens found on the MUCOUS MEMBRANES of humans, ANIMALS, and BIRDS. Eperythrozoon,Haemobartonella,Mycoplasma putrefaciens,PPLO,Pleuropneumonia-Like Organisms,Pleuropneumonia Like Organisms
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006681 HLA-D Antigens Human immune-response or Class II antigens found mainly, but not exclusively, on B-lymphocytes and produced from genes of the HLA-D locus. They are extremely polymorphic families of glycopeptides, each consisting of two chains, alpha and beta. This group of antigens includes the -DR, -DQ and -DP designations, of which HLA-DR is most studied; some of these glycoproteins are associated with certain diseases, possibly of immune etiology. Antigens, HLA-D,Class II Human Antigens,HLA-Dw Antigens,Human Class II Antigens,Ia-Like Antigens, Human,Immune Response-Associated Antigens, Human,Immune-Associated Antigens, Human,Immune-Response Antigens, Human,HLA-D,HLA-Dw,Immune Response Associated Antigens, Human,Antigens, HLA D,Antigens, HLA-Dw,Antigens, Human Ia-Like,Antigens, Human Immune-Associated,Antigens, Human Immune-Response,HLA D Antigens,HLA Dw Antigens,Human Ia-Like Antigens,Human Immune-Associated Antigens,Human Immune-Response Antigens,Ia Like Antigens, Human,Immune Associated Antigens, Human,Immune Response Antigens, Human
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000937 Antigen-Antibody Reactions The processes triggered by interactions of ANTIBODIES with their ANTIGENS. Antigen Antibody Reactions,Antigen-Antibody Reaction,Reaction, Antigen-Antibody,Reactions, Antigen-Antibody
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens

Related Publications

M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
December 1988, European journal of immunology,
M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
April 1989, Cellular immunology,
M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
November 1986, Scandinavian journal of immunology,
M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
August 1991, Immunology today,
M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
January 1988, The Journal of rheumatology,
M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
September 1986, Scandinavian journal of immunology,
M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
May 1987, Israel journal of medical sciences,
M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
February 1996, Infection and immunity,
M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
March 1997, Medical microbiology and immunology,
M Matthes, and H Schrezenmeier, and J Homfeld, and S Fleischer, and B Malissen, and H Kirchner, and B Fleischer
January 1990, Autoimmunity,
Copied contents to your clipboard!