Activation of secretion and surface alteration of cytolytic T-lymphocytes interacting with target cells. 1988

S N Bykovskaya, and A A Shevelev, and T A Kupriyanova
Laboratory of Cellular Immunity, All-Union Cancer Research Center, Moscow, USSR.

Cells obtained in mixed lymphocyte culture (MLC) and memory cells adsorbed on the surface of target cells (TC) were examined using scanning and transmission electron microscopy depending on the time of interaction with TC. Three types of lymphocytes were revealed: type I - cells of spherical shape with a smooth surface or an insignificant amount of microvilli; predominantly small and medium-sized lymphocytes contacting TC with non significant involvement of their surface or by several microvilli; type II - oval or round-shaped lymphocytes evenly covered with microvilli with considerably enlarged region of contact; type III cells - predominantly large lymphocytes and lymphoblasts flattened (spread) on TC, with multiple microvilli, ridge-like projections, and ruffles on their surface. TEM revealed activation of the secretory apparatus in the cytoplasm of such lymphocytes. With increased time of interaction, type III cells increase in number (from 8.6% after 10 min to 90.2% after 60 min of incubation). Memory cells show no morphologic signs of secretion in correlation with the absence of lysis of TC on which they are adsorbed. The surface of the lymphocytes adsorbed on the substrate with poly-L-lysin is not noticeably altered. It is suggested that 3 morphological types of lymphocytes correspond to 3 stages of secretion activation. Lymphocyte contact with TC surface is evidently a specific stimulus for activating secretory apparatus of CTL. SEM can be used for quantitation of activated lymphocytes.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic

Related Publications

S N Bykovskaya, and A A Shevelev, and T A Kupriyanova
April 1994, Doklady Akademii nauk,
S N Bykovskaya, and A A Shevelev, and T A Kupriyanova
May 1978, Biulleten' eksperimental'noi biologii i meditsiny,
S N Bykovskaya, and A A Shevelev, and T A Kupriyanova
October 1977, Biulleten' eksperimental'noi biologii i meditsiny,
S N Bykovskaya, and A A Shevelev, and T A Kupriyanova
January 1977, Annales d'immunologie,
S N Bykovskaya, and A A Shevelev, and T A Kupriyanova
January 1977, Doklady Akademii nauk SSSR,
S N Bykovskaya, and A A Shevelev, and T A Kupriyanova
January 1990, Annual review of immunology,
S N Bykovskaya, and A A Shevelev, and T A Kupriyanova
January 1983, Annual review of immunology,
Copied contents to your clipboard!