Regulation of L-cystine transport in Salmonella typhimurium. 1977

E W Baptist, and N M Kredich

A kinetic analysis of L-cystine uptake in wild-type Salmonella typhimurium indicates the presence of at least two, and possibly three, separate transport systems. CTS-1 accounts for the majority of uptake at 20 muM L-cystine, with a Vmax of 9.5 nmol/min per mg and a Km of 2.0 muM; CTS-2 is a low-capacity, higher-affinity system with a Vmax of 0.22 nmol/min per mg and a Km of 0.05 muM; a third, nonsaturable process has been designated CTS-3. We find that wild-type CTS-1 levels are at least 11 times higher in sulfur-limited cells than in L-cystine-grown cells. Pleiotropic cysteine auxotrophs of the types cysE (lacking serine transacetylase) and cysB- (lacking a regulatory element of positive control) have very low levels of CTS-1 even when grown under conditions of sulfur limitation, which response is analogous to that previously observed for cysteine biosynthetic enzymes (N . M. Kredich, J. Biol. Chem. 246:3474-3484, 1971). CTS-1 is induced in cysE mutants by growth in the presence of O-acetyl-L-serine (the product of serine transacetylase), again paralleling the behavior of the cysteine biosynthetic pathway. Strain DW25, a prototrophic cysBc mutant, which is constitutive for cysteine biosynthesis, is also derepressed for CTS-1 when grown on L-cystine. Since CTS-1 is regulated by sulfur limitation, O-acetyl-L-serine, and the cysB gene product, the same three conditions controlling cysteine biosynthesis, we propose that this transport system is a part of the cysteine regulon.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008757 Methylglucosides Methylglucopyranosides
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D003542 Cystathionine gamma-Lyase A multifunctional pyridoxal phosphate enzyme. In the final step in the biosynthesis of cysteine it catalyzes the cleavage of cystathionine to yield cysteine, ammonia, and 2-ketobutyrate. EC 4.4.1.1. Cystathionase,Cysteine Desulfhydrase,Cystine Desulfhydrase,Homoserine Deaminase,Homoserine Dehydratase,gamma-Cystathionase,Cystine Desulfohydrolase,Cystathionine gamma Lyase,Deaminase, Homoserine,Dehydratase, Homoserine,Desulfhydrase, Cysteine,Desulfhydrase, Cystine,Desulfohydrolase, Cystine,gamma Cystathionase,gamma-Lyase, Cystathionine
D003553 Cystine A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine. Copper Cystinate,L-Cystine,L Cystine
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide

Related Publications

E W Baptist, and N M Kredich
January 1982, Molecular & general genetics : MGG,
E W Baptist, and N M Kredich
July 1985, Journal of bacteriology,
E W Baptist, and N M Kredich
June 1966, Journal of bacteriology,
E W Baptist, and N M Kredich
January 1982, Annales de microbiologie,
E W Baptist, and N M Kredich
March 1980, Journal of bacteriology,
E W Baptist, and N M Kredich
January 1991, The Journal of biological chemistry,
E W Baptist, and N M Kredich
August 1976, Journal of general microbiology,
E W Baptist, and N M Kredich
September 1978, Archives of biochemistry and biophysics,
E W Baptist, and N M Kredich
February 1977, Journal of bacteriology,
Copied contents to your clipboard!