Can models of percutaneous absorption based on in vitro data in frogs predict in vivo absorption? 2020

Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
Pharmacy, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.

The primary aim of in vitro testing of chemicals delivered via the percutaneous route is to predict the absorption that would ensue if exposure occurred in live animals. While there is mounting evidence that in vitro diffusion studies in mammalian skin can provide valid information regarding likely in vivo absorption, little is known whether such a correlation exists between in vitro diffusion testing and in vivo blood levels in amphibians. The current study used previously-reported in vitro absorption data for caffeine, benzoic acid, and ibuprofen across isolated skin from the cane toad (Rhinella marina) to produce a series of linear mixed-effect models of the absorption parameters flux and permeability coefficient (Kp). Models investigated the relative impacts of animal weight, physicochemical characteristics of the applied chemical (logP or molecular weight), and site of application. The top models were then used to predict the flux, Kp and serum concentrations of the same three model chemicals. Finally, the absorption of these chemicals was determined in live cane toads, and results compared to the model predictions. LogP and site of application were included in all top models. In vivo absorption rates were lower than predicted for all chemicals, however, the models provided reasonable predictions of serum concentration, with factors of difference (FOD) ranging from 2.5-10.5. Ibuprofen, the chemical with the highest relative lipophilicity, had the poorest predictive performance, consistently having the highest FOD for all predictions. This report presents the first models of percutaneous absorption in an amphibian. These models provide a basic method to establish the approximate in vivo absorption of hydrophilic and moderately-lipophilic chemicals through frog skin, and could therefore be used to predict absorption when formulating such chemicals for treatment of disease in frogs, or for risk-assessments regarding chemical pollutants in frog habitats.

UI MeSH Term Description Entries
D007052 Ibuprofen A non-steroidal anti-inflammatory agent with analgesic, antipyretic, and anti-inflammatory properties Advil,Benzeneacetic Acid, alpha-methyl-4-(2-methylpropyl)- trimethylsilyl ester,Brufen,Ibumetin,Ibuprofen, (+-)-Isomer,Ibuprofen, (R)-Isomer,Ibuprofen, (S)-Isomer,Ibuprofen, Aluminum Salt,Ibuprofen, Calcium Salt,Ibuprofen, Copper (2+) Salt,Ibuprofen, Magnesium Salt,Ibuprofen, Potassium Salt,Ibuprofen, Sodium Salt,Ibuprofen, Zinc Salt,Ibuprofen-Zinc,Motrin,Nuprin,Rufen,Salprofen,Trauma-Dolgit Gel,alpha-Methyl-4-(2-methylpropyl)benzeneacetic Acid,Ibuprofen Zinc,Trauma Dolgit Gel
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D012869 Skin Absorption Uptake of substances through the SKIN. Absorption, Skin,Intracutaneous Absorption,Intradermal Absorption,Percutaneous Absorption,Transcutaneous Absorption,Transdermal Absorption,Absorption, Intracutaneous,Absorption, Intradermal,Absorption, Percutaneous,Absorption, Transcutaneous,Absorption, Transdermal,Absorptions, Intracutaneous,Absorptions, Intradermal,Absorptions, Percutaneous,Absorptions, Skin,Absorptions, Transcutaneous,Absorptions, Transdermal,Intracutaneous Absorptions,Intradermal Absorptions,Percutaneous Absorptions,Skin Absorptions,Transcutaneous Absorptions,Transdermal Absorptions

Related Publications

Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
January 2000, Annals of the New York Academy of Sciences,
Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
January 2018, Critical reviews in food science and nutrition,
Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
March 1975, The Journal of investigative dermatology,
Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
May 1998, The Annals of occupational hygiene,
Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
August 2021, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V,
Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
June 1991, Veterinary and human toxicology,
Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
June 2003, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
January 2011, Skin pharmacology and physiology,
Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
January 1997, Journal of pharmaceutical sciences,
Victoria K Llewelyn, and Lee Berger, and Beverley D Glass
July 1953, Archivio per le scienze mediche,
Copied contents to your clipboard!