Astaxanthin protecting myocardial cells from hypoxia/reoxygenation injury by regulating miR-138/HIF-1α axis. 2020

Y-S Gai, and Y-H Ren, and Y Gao, and H-N Liu
Department of Cardiology, Yantaishan Hospital, Shandong, P.R. China. dhdsym@sina.cn.

To investigate astaxanthin (AST) protecting myocardial cells from hypoxia/reoxygenation (H/R) injury by regulating miR-138/HIF-1α axis. Myocardial cells were collected and divided into a control group, a H/R group, and a H/R+AST group. The H/R injury model was established, and cells in the H/R+AST group were given AST before modeling. The cell survival rate, contents of myocardial enzymes, and apoptosis were detected. The survival rate in the H/R group reduced and was lower than that in the H/R+AST group (p<0.05). Compared with the control group, activities of myocardial enzymes significantly increased in the H/R group but those were inhibited in the H/R+AST group (p<0.05). The apoptotic rate in the H/R group significantly increased compared with the control group but that significantly decreased compared with the H/R+AST group (p<0.05). The expression of cleaved caspase-9 and caspase-3 increased in the H/R group (p<0.05), and was higher than that in the H/R+AST group (p<0.05). The expression levels of miR-138 and HIF-1α were detected. MiR-138 level significantly decreased in the H/R group but increased in the H/R+AST group (p<0.05). Compared with the control group, HIF-1α content significantly increased in the H/R group but that was significantly inhibited in the H/R+AST group (p<0.05). The Luciferase reporter gene assay confirmed that HIF-1α was the target gene of miR-138. After miR-138 mimics and HIF-1α siRNA were transfected into myocardial cells, the cell survival rate significantly increased, and activities of myocardial enzymes were significantly inhibited in the H/R+AST+miR-138 mimics and H/R+AST+HIF-1α siRNA groups (p<0.05). The apoptotic rate significantly decreased, and contents of cleaved caspase-9 and caspase-3 were significantly inhibited in the miR-138 mimics and HIF-1α siRNA groups (p<0.05). AST can exert a protective function in myocardial cells via regulating the expression of miR-138/HIF-1α axis.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015428 Myocardial Reperfusion Injury Damage to the MYOCARDIUM resulting from MYOCARDIAL REPERFUSION (restoration of blood flow to ischemic areas of the HEART.) Reperfusion takes place when there is spontaneous thrombolysis, THROMBOLYTIC THERAPY, collateral flow from other coronary vascular beds, or reversal of vasospasm. Reperfusion Injury, Myocardial,Injury, Myocardial Reperfusion,Myocardial Ischemic Reperfusion Injury,Injuries, Myocardial Reperfusion,Myocardial Reperfusion Injuries,Reperfusion Injuries, Myocardial
D015687 Cell Hypoxia A condition of decreased oxygen content at the cellular level. Anoxia, Cellular,Cell Anoxia,Hypoxia, Cellular,Anoxia, Cell,Anoxias, Cell,Anoxias, Cellular,Cell Anoxias,Cell Hypoxias,Cellular Anoxia,Cellular Anoxias,Cellular Hypoxia,Cellular Hypoxias,Hypoxia, Cell,Hypoxias, Cell,Hypoxias, Cellular
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D051795 Hypoxia-Inducible Factor 1, alpha Subunit Hypoxia-inducible factor 1, alpha subunit is a basic helix-loop-helix transcription factor that is regulated by OXYGEN availability and is targeted for degradation by VHL TUMOR SUPPRESSOR PROTEIN. Hypoxia Inducible Factor 1, alpha Subunit
D053148 Caspase 3 A short pro-domain caspase that plays an effector role in APOPTOSIS. It is activated by INITIATOR CASPASES such as CASPASE 9. Isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA. CASP3,Apopain,Caspase-3,Pro-Caspase-3,Procaspase-3,Pro Caspase 3,Procaspase 3

Related Publications

Y-S Gai, and Y-H Ren, and Y Gao, and H-N Liu
January 2020, Frontiers in pharmacology,
Y-S Gai, and Y-H Ren, and Y Gao, and H-N Liu
June 2022, Journal of biochemical and molecular toxicology,
Y-S Gai, and Y-H Ren, and Y Gao, and H-N Liu
March 2020, Molecular and cellular biochemistry,
Y-S Gai, and Y-H Ren, and Y Gao, and H-N Liu
October 2021, Cardiovascular toxicology,
Y-S Gai, and Y-H Ren, and Y Gao, and H-N Liu
February 2019, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Y-S Gai, and Y-H Ren, and Y Gao, and H-N Liu
October 2021, Journal of biochemical and molecular toxicology,
Y-S Gai, and Y-H Ren, and Y Gao, and H-N Liu
January 2020, Neoplasma,
Y-S Gai, and Y-H Ren, and Y Gao, and H-N Liu
March 2020, Arteriosclerosis, thrombosis, and vascular biology,
Y-S Gai, and Y-H Ren, and Y Gao, and H-N Liu
July 2020, Molecular and cellular biochemistry,
Copied contents to your clipboard!