The effects of 1,25-dihydroxyvitamin D3 on markers related to the differentiation and maturation of bone marrow-derived dendritic cells from control and obese mice. 2020

Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea. Electronic address: sun2rg@snu.ac.kr.

Vitamin D has been reported to regulate the maturation and function of dendritic cells (DCs). Obesity was shown to be associated with the dysregulation of vitamin D metabolism and malfunction of DCs. We investigated the effects of in vitro 1,25(OH)2D3 treatment (0, 1, or 10 nM) on phenotype and expression of genes related to function of bone marrow-derived DCs (BMDCs) from control and obese mice. C57BL/6 N mice were fed a control or high-fat (10% or 45% kcal fat: CON or HFD) diets for 15 weeks. Differentiation toward DCs was induced with GM-CSF (20 ng/ml) and maturation was induced by LPS (50 ng/ml); 10 nM 1,25(OH)2D3 treatment inhibited BMDC differentiation (CD11c+) and decreased the percentage of mature DCs (MHCIIhighCD11c+ and CD86highCD11c+) in both CON and HFD groups. The Il10 expression in stimulated BMDCs from the CON group increased with the 10 nM 1,25(OH)2D3 treatment, but not in those from the HFD group. The Il12b mRNA levels in stimulated BMDCs were lower in the HFD group than in the CON group. In conclusion, lower levels of Cd 40, Cd83 and Il12 mRNA in LPS-stimulated BMDCs from obese mice suggest malfunction of DCs as antigen presenting cells. 1,25(OH)2D3 treatment inhibited the differentiation and maturation of BMDCs in both control and obese mice. Differential effects of 1,25(OH)2D3 on the expression of Il10 between control and obese mice suggest that regulation of immune response by vitamin D could be influenced by obesity.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008820 Mice, Obese Mutant mice exhibiting a marked obesity coupled with overeating, hyperglycemia, hyperinsulinemia, marked insulin resistance, and infertility when in a homozygous state. They may be inbred or hybrid. Hyperglycemic Mice,Obese Mice,Mouse, Hyperglycemic,Mouse, Obese,Hyperglycemic Mouse,Mice, Hyperglycemic,Obese Mouse
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014807 Vitamin D A vitamin that includes both CHOLECALCIFEROLS and ERGOCALCIFEROLS, which have the common effect of preventing or curing RICKETS in animals. It can also be viewed as a hormone since it can be formed in SKIN by action of ULTRAVIOLET RAYS upon the precursors, 7-dehydrocholesterol and ERGOSTEROL, and acts on VITAMIN D RECEPTORS to regulate CALCIUM in opposition to PARATHYROID HORMONE.

Related Publications

Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
December 2004, Annals of the New York Academy of Sciences,
Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
May 2004, The Journal of steroid biochemistry and molecular biology,
Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
December 1995, Endocrinology,
Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
February 2022, The Journal of nutritional biochemistry,
Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
January 2023, The Journal of steroid biochemistry and molecular biology,
Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
May 2022, IUBMB life,
Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
September 1993, Calcified tissue international,
Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
September 1997, Leukemia & lymphoma,
Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
January 2020, Nutrients,
Kyeong Sun Cha, and Chan Yoon Park, and Seung Eun Lee, and Tae Yeon Kim, and Sung Nim Han
June 1995, Bone,
Copied contents to your clipboard!