The effect of temperature acclimation on the force-frequency relationship and adrenergic sensitivity of the ventricle of two populations of juvenile sockeye salmon. 2020

A T Goulding, and A P Farrell
Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada. goulding@alumni.ubc.ca.

We tested the hypothesis that cardiorespiratory differences known to exist among adult sockeye salmon populations also exist in the juveniles. To test this hypothesis, we compared cardiac contractility and adrenergic responsiveness of juvenile sockeye salmon from two geographically isolated populations that were reared from eggs under common garden conditions and at two acclimation temperatures (5 °C and 14 °C). However, we found no substantive differences in the force-frequency response (FFR) and the cardiac pumping capacity of juveniles from Weaver Creek and Chilko River populations, even when we considered wild-reared juveniles from one of the populations. An unexpected discovery for all fish groups at 5 °C was a rather flat FFR during tonic β-adrenergic stimulation (βAR) stimulation. Curiously, while active tension nearly doubled with maximum βAR stimulation at low pacing frequencies for all fish groups, a negative FFR with maximum βAR stimulation meant that this inotropic benefit was lost at the highest pacing frequency (0.8 Hz). Active tension with tonic βAR stimulation was similar at 14 °C, but maximum pacing frequency doubled and all fish groups displayed a modest negative FFR. Maximum βAR stimulation again doubled active tension and this benefit was retained even at the highest pacing frequency (1.6 Hz) at 14 °C. Even though subtle population differences were apparent for the FFR and pumping capacity, their biological significance is unclear. What is clear, however, is that the cardiac pumping capacity of juvenile sockeye would benefit more from βAR stimulation swimming at 15 °C than when swimming at 5 °C.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000064 Acclimatization Adaptation to a new environment or to a change in the old. Acclimation
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012474 Salmon Fish of the genera ONCORHYNCHUS and Salmo in the family SALMONIDAE. They are anadromous game fish, frequenting the coastal waters of both the North Atlantic and Pacific. They are known for their gameness as a sport fish and for the quality of their flesh as a table fish. (Webster, 3d ed). Oncorhynchus gorbuscha,Oncorhynchus nerka,Oncorhynchus tshawytscha,Salmo salmo,Salmon, Chinook,Salmon, Pink,Salmon, Sockeye,Chinook Salmon,Pink Salmon,Sockeye Salmon
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D016276 Ventricular Function The hemodynamic and electrophysiological action of the HEART VENTRICLES. Function, Ventricular,Functions, Ventricular,Ventricular Functions

Related Publications

A T Goulding, and A P Farrell
January 1998, Basic research in cardiology,
A T Goulding, and A P Farrell
January 1998, Life sciences,
A T Goulding, and A P Farrell
February 2017, Environmental toxicology and chemistry,
A T Goulding, and A P Farrell
April 2002, Fish & shellfish immunology,
Copied contents to your clipboard!