A simple method of mechanical power calculation: using mean airway pressure to replace plateau pressure. 2021

Yi Chi, and Huaiwu He, and Yun Long
Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China.

The reference method for mechanical power (MP) calculation proposed by Gattinoni et al. is based on plateau pressure (Pplat) which needs an inspiratory hold. This study aims to introduce and validate a simple surrogate for MP calculation without any intervention in ventilated patients with or without acute respiratory distress syndrome (ARDS). The introduced equation is as:[Formula: see text]where Pmean is mean airway pressure, VE is minute ventilation, PEEP is positive end-expiratory pressure, and Te/Ti is expiratory-to-inspiratory ratio. 50 patients with ARDS and 50 post-operative patients without ARDS were enrolled. Pmean-derived MP and reference MP were obtained at the inspiratory plateau time (Tplat) of 0 and 0.5 s (s). When Tplat was adjusted from 0 to 0.5 s, higher Pmean [non-ARDS cases: 9.3 (8.8-9.9) cmH2O versus 8.2 (7.9-8.8) cmH2O, P < 0.001; ARDS cases: 14 (13-16) cmH2O versus 13 (11-14) cmH2O, P < 0.001] and shorter Te/Ti [non-ARDS cases: 1.4 (1.2-1.7) versus 2.4 (2.0-3.0), P < 0.001; ARDS cases: 1.3 (1.2-1.5) versus 2.5 (2.3-2.9), P < 0.001] were found. At both Tplat levels, the Pmean-derived MP correlated well with the reference MP both in patients with or without ARDS (non-ARDS: slopes = 1.05, 0.94, R2 = 0.95, 0.93, bias + 0.76, + 0.51; ARDS: slopes = 1.03, 0.95, R2 = 0.96, 0.96, bias + 0.97, + 0.78. P < 0.0001 for all). In patients with or without ARDS, Pmean-derived MP allows rapid and dynamic estimation of mechanical power without any intervention at the bedside.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D012121 Respiration, Artificial Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2). Ventilation, Mechanical,Mechanical Ventilation,Artificial Respiration,Artificial Respirations,Mechanical Ventilations,Respirations, Artificial,Ventilations, Mechanical
D012128 Respiratory Distress Syndrome A syndrome characterized by progressive life-threatening RESPIRATORY INSUFFICIENCY in the absence of known LUNG DISEASES, usually following a systemic insult such as surgery or major TRAUMA. ARDS, Human,Acute Respiratory Distress Syndrome,Adult Respiratory Distress Syndrome,Pediatric Respiratory Distress Syndrome,Respiratory Distress Syndrome, Acute,Respiratory Distress Syndrome, Adult,Respiratory Distress Syndrome, Pediatric,Shock Lung,Distress Syndrome, Respiratory,Distress Syndromes, Respiratory,Human ARDS,Lung, Shock,Respiratory Distress Syndromes,Syndrome, Respiratory Distress
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Yi Chi, and Huaiwu He, and Yun Long
September 1980, The Journal of pediatrics,
Yi Chi, and Huaiwu He, and Yun Long
August 1984, Critical care medicine,
Yi Chi, and Huaiwu He, and Yun Long
May 2022, Intensive care medicine experimental,
Yi Chi, and Huaiwu He, and Yun Long
September 2019, Intensive care medicine,
Yi Chi, and Huaiwu He, and Yun Long
February 1983, Critical care medicine,
Yi Chi, and Huaiwu He, and Yun Long
January 1976, Zentralblatt fur Gynakologie,
Yi Chi, and Huaiwu He, and Yun Long
November 1962, The Journal of urology,
Yi Chi, and Huaiwu He, and Yun Long
March 2020, Intensive care medicine,
Yi Chi, and Huaiwu He, and Yun Long
February 1999, Military medicine,
Yi Chi, and Huaiwu He, and Yun Long
July 2020, Critical care (London, England),
Copied contents to your clipboard!