In situ survival of Vibrio cholerae and Escherichia coli in tropical coral reefs. 1988

N Pérez-Rosas, and T C Hazen
Department of Biology, College of Natural Sciences, University of Puerto Rico.

Vibrio cholerae and Escherichia coli were inoculated into membrane diffusion chambers and placed around two small coral reef islands in Puerto Rico and monitored for 5 days. Several chambers were also buried in the sands of one of the reefs. Both E. coli and V. cholerae densities declined by 2 orders of magnitude, as measured by direct particle counts with a Coulter Counter (Coulter Electronics, Inc., Hialeah, Fla.). However, the density of neither bacteria changed dramatically when the same samples were analyzed by epifluorescent direct counts. Differences in the two direct count methods were accounted for by changes in cell morphology that occurred in both bacteria after exposure to seawater. Morphological changes occurred more rapidly in E. coli compared with those in V. cholerae. Bacteria in chambers exposed to sediment did not show significant changes in morphology and had only a slight decline in density. Physiological activity declined by more than 40% for both bacteria within 24 h. The decline in activity was less severe in the sediments. Tropical coral reef sands and turtle grass beds were shown to be less stressful environments for V. cholerae and E. coli than would have been predicted from temperature and microcosm studies. V. cholerae can survive the in situ conditions of a tropical coral reef and could become a source of bacterial contamination for fish and shellfish in this environment. The simultaneous monitoring of E. coli levels established that this bacteria can not be used as an indicator of V. cholerae or other fecal-borne pathogens in coral reef environments because of the greater stress these environments put on E. coli. Both bacteria could be of greater public health importance in tropical marine areas than previously imagined.

UI MeSH Term Description Entries
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000165 Acridine Orange A cationic cytochemical stain specific for cell nuclei, especially DNA. It is used as a supravital stain and in fluorescence cytochemistry. It may cause mutations in microorganisms. Tetramethyl Acridine Diamine,3,6-Bis(dimethylamino)acridine,Acridine Orange Base,Basic Orange 3RN,C.I. 46005,C.I. Basic Orange 14,Euchrysine,N,N,N',N'-Tetramethyl-3,6-Acridinediamine Hydrochloride,Rhoduline Orange,Acridine Diamine, Tetramethyl,Base, Acridine Orange,Diamine, Tetramethyl Acridine,Orange 3RN, Basic,Orange Base, Acridine,Orange, Acridine,Orange, Rhoduline
D012623 Seawater The salinated water of OCEANS AND SEAS that provides habitat for marine organisms. Sea Water,Sea Waters,Seawaters,Water, Sea,Waters, Sea
D014734 Vibrio cholerae The etiologic agent of CHOLERA. Bacillus cholerae,Bacillus cholerae-asiaticae,Liquidivibrio cholerae,Microspira comma,Pacinia cholerae-asiaticae,Spirillum cholerae,Spirillum cholerae-asiaticae,Vibrio albensis,Vibrio cholera,Vibrio cholerae-asiaticae,Vibrio comma
D014871 Water Microbiology The presence of bacteria, viruses, and fungi in water. This term is not restricted to pathogenic organisms. Microbiology, Water

Related Publications

N Pérez-Rosas, and T C Hazen
January 2011, Proceedings of the Japan Academy. Series B, Physical and biological sciences,
N Pérez-Rosas, and T C Hazen
March 1982, Applied and environmental microbiology,
N Pérez-Rosas, and T C Hazen
August 2015, Journal of infection in developing countries,
N Pérez-Rosas, and T C Hazen
January 1979, Contributions to microbiology and immunology,
N Pérez-Rosas, and T C Hazen
November 2016, ACS synthetic biology,
N Pérez-Rosas, and T C Hazen
March 1978, Science (New York, N.Y.),
N Pérez-Rosas, and T C Hazen
July 2005, Emerging infectious diseases,
N Pérez-Rosas, and T C Hazen
July 1996, The Indian journal of medical research,
N Pérez-Rosas, and T C Hazen
January 1992, Environmental and molecular mutagenesis,
Copied contents to your clipboard!