UV mutagenesis in E. coli with excision repair initiated by uvrABC or denV gene products. 1988

R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46223.

Mutation frequency responses produced by ultraviolet light are compared in 4 closely related strains of E. coli B/r having the same tyr(Oc) allele and different excision-repair capabilities: uvr+ (excision repair initiated by wild-type UvrABC activity), uvrA (excision repair defective), uvrA/pdenV-7 (excision repair initiated by endonuclease V of bacteriophage T4, DenV activity), and uvr+/pdenV-7 (excision repair initiated by UvrABC and DenV activities). The production of Tyr+ prototrophic mutants is classified into back-mutations and de novo or converted glutamine tRNA suppressor mutations to indicate different mutation events. Cells transformed with the plasmid pdenV-7 require larger exposures than the parent strains to produce comparable mutation frequency responses, indicating that DenV activity can repair mutagenic photoproducts. When damage reduction by UvrABC or DenV is compared for each of the specific categories of mutation, the results are consistent with the idea that pyrimidine dimers infrequently or never target back-mutations of this allele, frequently target the de novo suppressor mutations, and extensively or exclusively target the converted suppressor mutations. This analysis is based on the distinction that UvrABC-initiated excision repair recognizes dimer and non-dimer (pyrimidine (6-4) pyrimidone) photoproducts but that DenV-initiated repair recognizes only pyrimidine dimers.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011740 Pyrimidine Dimers Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION. Cyclobutane Pyrimidine Dimer,Cyclobutane-Pyrimidine Dimer,Cytosine-Thymine Dimer,Pyrimidine Dimer,Thymine Dimer,Thymine Dimers,Cyclobutane-Pyrimidine Dimers,Cytosine-Thymine Dimers,Thymine-Cyclobutane Dimer,Thymine-Thymine Cyclobutane Dimer,Cyclobutane Dimer, Thymine-Thymine,Cyclobutane Dimers, Thymine-Thymine,Cyclobutane Pyrimidine Dimers,Cytosine Thymine Dimer,Cytosine Thymine Dimers,Pyrimidine Dimer, Cyclobutane,Pyrimidine Dimers, Cyclobutane,Thymine Cyclobutane Dimer,Thymine Thymine Cyclobutane Dimer,Thymine-Cyclobutane Dimers,Thymine-Thymine Cyclobutane Dimers
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage

Related Publications

R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
April 1986, Molecular & general genetics : MGG,
R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
February 1994, The Journal of biological chemistry,
R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
January 1983, Basic life sciences,
R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
September 1988, The Journal of biological chemistry,
R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
July 2017, PLoS genetics,
R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
September 2001, Mutation research,
R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
June 2012, Biochemical genetics,
R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
July 1994, Annals of the New York Academy of Sciences,
R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
November 1980, Mutation research,
R Bockrath, and M Z Hodes, and P Mosbaugh, and K Valerie, and J K de Riel
December 1991, Journal of cell science,
Copied contents to your clipboard!