Activation of selenate by adenosine 5'-triphosphate sulphurylase from Saccharomyces cerevisiae. 1977

G L Dilworth, and R S Bandurski

In the presence of ATP and Mg2+, ATP sulphurylase from Saccharomyces cerevisiae catalysed the conversion of selenate into a compound with the electrophoretic and acid-lability properties of adenosine 5'-sulphatophosphate. Structural characterization, involving extensive purification of adenosine 5'-selenophosphate, proved impossible. However, we showed ATP-, Mg2+- and ATP sulphurylase-dependent, and inorganic pyrophosphatase-stimulated, production of elemental selenium from selenate in the presence of GSH (reduced glutathione). Since selenate was not reduced by GSH, this reaction proved that ATP sulphurylase had formed an active selenate. The enzyme catalysed formation of elemental selenium had the same kinetics and GSH-dependency as the non-enzymic reduction of selenite to elemental selenium by GSH. In the presence of inorganic pyrophosphatase, 2 mol of Pi was released for each mol of 'active selenate' formed. This was shown by a spectrophotometric assay for elemental selenium. The observed reactivity with thiols and the instability of the enzymic product were those predicted for selenium anhydrides. By analogy with the chemistry of sulphur, the product of the thiolytic cleavage of a selenium anhydride would be converted into selenite. The selenite would then be reduced by the thiol to elemental selenium. We conclude that ATP sulphurylase can catalyse the formation of adenosine 5'-selenophosphate. The anhydride can be reduced by thiols in a manner similar to the reduction of selenite. These results probably explain the ability of mammals, lacking a sulphate reductase system, to incorporate selenium from selenate into seleno-amino acids.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D004590 Electrophoresis, Paper Electrophoresis in which paper is used as the diffusion medium. This technique is confined almost entirely to separations of small molecules such as amino acids, peptides, and nucleotides, and relatively high voltages are nearly always used. Paper Electrophoresis
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012643 Selenium An element with the atomic symbol Se, atomic number 34, and atomic weight 78.97. It is an essential micronutrient for mammals and other animals but is toxic in large amounts. Selenium protects intracellular structures against oxidative damage. It is an essential component of GLUTATHIONE PEROXIDASE. Selenium-80,Selenium 80

Related Publications

G L Dilworth, and R S Bandurski
July 1973, The Biochemical journal,
G L Dilworth, and R S Bandurski
July 1979, Experientia,
G L Dilworth, and R S Bandurski
April 1974, The Biochemical journal,
G L Dilworth, and R S Bandurski
July 1972, The Biochemical journal,
G L Dilworth, and R S Bandurski
June 1956, Archives of biochemistry and biophysics,
G L Dilworth, and R S Bandurski
May 1968, The Journal of biological chemistry,
G L Dilworth, and R S Bandurski
July 1975, The Biochemical journal,
Copied contents to your clipboard!