Expression of soluble and fully functional ricin A chain in Escherichia coli is temperature-sensitive. 1988

M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
Cetus Corporation, Emeryville, California 94608.

Linkage of ricin A chain (RA) to a cell surface binding antibody or other ligand can result in a potent cytotoxic agent. We expressed the primary sequence for RA in Escherichia coli to facilitate production and to obtain protein free of naturally occurring contaminants, i.e. ricin B chain. Differences in the level of expression and in the characteristics of the expressed protein were noted when several different host/vector systems were tested. Recombinant RA (rRA) was expressed directly under control of the phage lambda major leftward promoter (PL) and the E. coli trp promoter. It was also expressed fused to E. coli alkaline phosphatase sequences, both in the same reading frame for secretion and out-of-reading frame for expression in a cistron-like arrangement. Expression in the PL promoter system, which is temperature-regulated, was achieved at 37 degrees C as well as at 42 degrees C. The protein expressed at these different temperatures had grossly different properties. Whereas rRA expressed at 37 degrees C was soluble and fully active, that produced at 42 degrees C was aggregated, insoluble, and reduced in activity. Soluble rRA could be converted to the insoluble form by incubation at 42 degrees C in vivo, but not in vitro. Hence, this difference in properties does not simply reflect an inherent thermal instability of the protein. Conditions present in vivo, including the possible association with other proteins, are apparently required for this effect on rRA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012276 Ricin A protein phytotoxin from the seeds of Ricinus communis, the castor oil plant. It agglutinates cells, is proteolytic, and causes lethal inflammation and hemorrhage if taken internally. Castor Bean Lectin,Lectin, Castor Bean,Lectin, Ricinus,Ricin Toxin,RCA 60,RCA60,Ricin A Chain,Ricin B Chain,Ricin D,Ricin I,Ricinus Toxin,A Chain, Ricin,B Chain, Ricin,Ricinus Lectin,Toxin, Ricin,Toxin, Ricinus
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
April 2004, Protein expression and purification,
M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
May 1987, FEBS letters,
M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
February 1989, FEBS letters,
M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
April 1994, Biochemistry and molecular biology international,
M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
November 1990, Proceedings of the National Academy of Sciences of the United States of America,
M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
February 1984, The EMBO journal,
M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
June 1987, Molecular biology & medicine,
M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
December 1995, Protein expression and purification,
M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
August 1987, Proceedings of the National Academy of Sciences of the United States of America,
M Piatak, and J A Lane, and W Laird, and M J Bjorn, and A Wang, and M Williams
November 2002, Protein expression and purification,
Copied contents to your clipboard!