Inhibition of B7-H4 promotes hepatocellular carcinoma cell apoptosis and autophagy through the PI3K signaling pathway. 2020

Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

B7-H4 and autophagy can regulate or be induced by the PI3K signaling pathway. However, the association between B7-H4 and autophagy in hepatocellular carcinoma (HCC)remains unclear. The aim of this work was to investigate whether B7-H4 regulates autophagy via the PI3K signaling pathway in HCC cells. Here, western blotting was used to measure the expression of the related proteins involved in changes in of autophagy and apoptosis, such as LC3, P62, cleaved caspase 3, cleaved PARP, BCL-2, and BAX in Huh7 and Hep3B cells. Additionally, PI3K/AKT/mTOR signaling pathway proteins were measured. Cell counting kit-8 and flow cytometry were used to analyze the effects of B7-H4 siRNA interference on cell proliferation with the interference of B7-H4 siRNA. We found that B7-H4 siRNA increased HCC cell apoptosis and autophagy, and reduced cell proliferation. Moreover, the apoptosis-related proteins cleaved caspase 3, cleaved PARP and BAX were increased and Bcl-2 was decreased after B7-H4 siRNA interference. The expression level of the autophagy-related protein LC3Ⅱ was upregulated, while expression of the autophagy adaptor P62 expression was decreased in B7-H4 siRNA-pretreated cells. Furthermore, our data revealed that B7-H4 regulated apoptosis and autophagy through the PI3K signaling pathway in HCC cells. Therefore, these results suggested that B7-H4 plays an important role in HCC progression by affecting cell apoptosis and autophagy.

UI MeSH Term Description Entries
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D060907 V-Set Domain-Containing T-Cell Activation Inhibitor 1 A B7 antigen subtype that inhibits the costimulation of T-cell activation, proliferation, cytokine production and development of cytotoxicity. The over expression of this protein in a variety of tumor cell types suggests its role in TUMOR IMMUNE EVASION. B7H4 Immune Costimulatory Protein,Immune Costimulatory Protein B7-H4,T-Cell Costimulatory Molecule B7x,Immune Costimulatory Protein B7 H4,T Cell Costimulatory Molecule B7x,V Set Domain Containing T Cell Activation Inhibitor 1
D019869 Phosphatidylinositol 3-Kinases Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell. PI-3 Kinase,Phosphatidylinositol-3-OH Kinase,PtdIns 3-Kinase,PI 3-Kinase,PI-3K,PI3 Kinases,PI3-Kinase,Phosphoinositide 3 Kinases,Phosphoinositide 3-Hydroxykinase,PtdIns 3-Kinases,3-Hydroxykinase, Phosphoinositide,Kinase, PI-3,Kinase, Phosphatidylinositol-3-OH,Kinases, PI3,Kinases, Phosphoinositide 3,PI 3 Kinase,PI3 Kinase,Phosphatidylinositol 3 Kinases,Phosphatidylinositol 3 OH Kinase,Phosphoinositide 3 Hydroxykinase,PtdIns 3 Kinase,PtdIns 3 Kinases

Related Publications

Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
November 2014, Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology,
Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
February 2020, Clinical and experimental medicine,
Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
March 2017, Cell death & disease,
Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
April 2024, Biochemical genetics,
Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
January 2023, European journal of medical research,
Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
July 2023, Archives of biochemistry and biophysics,
Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
April 2024, Biochemical genetics,
Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
February 2017, Oncotarget,
Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
September 2019, Bioscience reports,
Tuan-Tuan Hao, and Rui Liao, and Deng-Liang Lei, and Gang-Li Hu, and Fang Luo
January 2019, American journal of translational research,
Copied contents to your clipboard!