Characterization of the thyroid microsomal antigen, and its relationship to thyroid peroxidase, using monoclonal antibodies. 1988

L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
Department of Medicine, University of Chicago, Illinois 60637.

MAb directed to the thyroid microsomal antigen have been developed. All bound to 101- and 107-kD bands in Western blot analysis using thyroid microsomal fraction as antigen. The MAb also bound to microsomal proteins immunoprecipitated by serum from patients having a high titer of anti-microsomal antibody but no antibodies to thyroglobulin or thyrotropin-stimulating hormone receptor. The pattern of binding was related to the amount of reducing agent. The 101- and 107-kD bands were increased by addition of dithiothreitol whereas, in its absence, numerous bands of higher molecular weight were present, suggesting a multimeric protein structure. Despite the inability to immunoprecipitate thyroid peroxidase (TPO) enzymatic activity, the MAb bound intensively in Western blot to denatured purified hog TPO and to denatured immunopurified human TPO. Trypsin digestion of the 101-107-kD antigen produced a doublet of 84-88 kD that was still immunoreactive with MAb. One of five polyclonal sera tested (with a microsomal antibody titer greater than 1/20,480 measured by the tanned red cell hemagglutination technique) also recognized the 84-88 kD trypsin fragments. Addition of V8 protease led to a disappearance of the 107-kD protein, but not the 101-kD protein, proving that this antigen is formed by two different polypeptides. The MAb bound strongly to thyroid epithelium, whereas binding to papillary carcinoma was absent or low and moderate for follicular and Hurthle cell carcinoma. This study indicates that the thyroid microsomal antigen and TPO are identical and are constituted of two different polypeptides. On SDS-PAGE the antigen appears as two contiguous bands which share common epitopes but are not identical, as proven by their size and difference in susceptibility to proteolytic digestion. The immunoreactivity of the molecule is highly dependent on a trypsin-sensitive site, which appears important in the recognition of the antigen by polyclonal sera and may have biological importance. The expression of microsomal antigenicity is variable among various thyroid carcinomas.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010544 Peroxidases Ovoperoxidase
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D013961 Thyroid Gland A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively. Thyroid,Gland, Thyroid,Glands, Thyroid,Thyroid Glands,Thyroids
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
January 1992, Autoimmunity,
L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
January 1990, Autoimmunity,
L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
January 1991, Autoimmunity,
L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
January 1987, Acta endocrinologica. Supplementum,
L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
September 1987, Molecular and cellular endocrinology,
L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
November 1988, Biokhimiia (Moscow, Russia),
L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
October 1985, FEBS letters,
L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
March 1987, The Journal of clinical investigation,
L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
June 1985, Journal of biochemistry,
L Portmann, and F W Fitch, and W Havran, and N Hamada, and W A Franklin, and L J DeGroot
May 1988, Immunology,
Copied contents to your clipboard!