BASIC: A Simple and Accurate Modular DNA Assembly Method. 2020

Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
Department of Life Sciences, Imperial College London, London, UK. m.storch@imperial.ac.uk.

Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, robust, and highly accurate DNA assembly method, which provides 99% correct assemblies for a typical four-part assembly, enabling high efficiency cloning workflows (Storch et al., ACS Synth Biol, https://doi.org/10.1021/sb500356 , 2015). BASIC employs standardised DNA linkers to combine bioparts, stored in the universal BASIC format. Once a new biopart is formatted into BASIC standard, defined by flanking 18 bp prefix and suffix sequences, it can be placed at any position and in any context within a designed BASIC assembly. This modularity of the BASIC approach is further enhanced by a range of functional linkers, including genetic elements like ribosomal binding sites (RBS) and peptide linkers. The method has a single tier format, whereby any BASIC assembly can create a new composite BASIC part in the same format used for the original parts; it can thus enter a subsequent BASIC assembly without the need for reformatting or changes to the workflow. This unique idempotent cloning mechanism allows for the assembly of constructs in multiple, conceptionally simple hierarchical rounds. Combined with its high accuracy and robustness, this makes BASIC a versatile assembly method for combinatorial and complex assemblies both at bench and biofoundry scale. The single universal storage format of BASIC parts enables compressed universal biopart libraries that promote sharing of parts and reproducible assembly strategies across labs, supporting efforts to improve reproducibility. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol, relies on a single tier format, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round (Casini et al., Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm4014 , 2015).

UI MeSH Term Description Entries
D012107 Research Design A plan for collecting and utilizing data so that desired information can be obtained with sufficient precision or so that an hypothesis can be tested properly. Experimental Design,Data Adjustment,Data Reporting,Design, Experimental,Designs, Experimental,Error Sources,Experimental Designs,Matched Groups,Methodology, Research,Problem Formulation,Research Methodology,Research Proposal,Research Strategy,Research Technics,Research Techniques,Scoring Methods,Adjustment, Data,Adjustments, Data,Data Adjustments,Design, Research,Designs, Research,Error Source,Formulation, Problem,Formulations, Problem,Group, Matched,Groups, Matched,Matched Group,Method, Scoring,Methods, Scoring,Problem Formulations,Proposal, Research,Proposals, Research,Reporting, Data,Research Designs,Research Proposals,Research Strategies,Research Technic,Research Technique,Scoring Method,Source, Error,Sources, Error,Strategies, Research,Strategy, Research,Technic, Research,Technics, Research,Technique, Research,Techniques, Research
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D058615 Synthetic Biology A field of biological research combining engineering in the formulation, design, and building (synthesis) of novel biological structures, functions, and systems. Biologies, Synthetic,Biology, Synthetic,Synthetic Biologies

Related Publications

Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
January 2017, Methods in molecular biology (Clifton, N.J.),
Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
June 2017, Nucleic acids research,
Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
January 2017, Methods in molecular biology (Clifton, N.J.),
Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
July 2015, ACS synthetic biology,
Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
January 2014, PloS one,
Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
November 2006, Journal of the American Chemical Society,
Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
January 2020, Methods in molecular biology (Clifton, N.J.),
Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
January 2009, Angewandte Chemie (International ed. in English),
Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
May 2020, ACS synthetic biology,
Marko Storch, and Ari Dwijayanti, and Haris Mallick, and Matthew C Haines, and Geoff S Baldwin
October 1973, Archives of dermatology,
Copied contents to your clipboard!