Gene conversion associated with site-specific recombination in yeast plasmid pSR1. 1988

H Matsuzaki, and H Araki, and Y Oshima
Department of Fermentation Technology, Faculty of Engineering, Osaka University, Japan.

A circular DNA plasmid, pSR1, isolated from Zygosaccharomyces rouxii has a pair of inverted repeats consisting of completely homologous 959-base pair (bp) sequences. Intramolecular recombination occurs frequently at the inverted repeats in cells of Saccharomyces cerevisiae, as well as in Z. rouxii, and is catalyzed by a protein encoded by the R gene of its own genome. The recombination is, however, independent of the RAD52 gene of the host genome. A site for initiation of the intramolecular recombination in the S. cerevisiae host was delimited into, at most, a 58-bp region in the inverted repeats by using mutant plasmids created by linker insertion. The 58-bp region contains a pair with 14-bp dyad symmetry separated by a 3-bp spacer sequence. The recombination initiated at this site was accompanied by a high frequency of gene conversion (3 to 50% of the plasmid clones examined). Heterogeneity created by the linker insertion or by a deletion (at most 153 bp so far tested) at any place on the inverted repeats was converted to a homologous combination by the gene conversion, even in the rad52-1 mutant host. A mechanism implying branch migration coupled with DNA replication is discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005785 Gene Conversion The asymmetrical segregation of genes during replication which leads to the production of non-reciprocal recombinant strands and the apparent conversion of one allele into another. Thus, e.g., the meiotic products of an Aa individual may be AAAa or aaaA instead of AAaa, i.e., the A allele has been converted into the a allele or vice versa. Polar Recombination,Polaron,Conversion, Gene,Conversions, Gene,Gene Conversions,Polar Recombinations,Polarons,Recombination, Polar,Recombinations, Polar
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012440 Saccharomyces A genus of ascomycetous fungi of the family Saccharomycetaceae, order SACCHAROMYCETALES. Saccharomyce

Related Publications

H Matsuzaki, and H Araki, and Y Oshima
August 1986, Cell,
H Matsuzaki, and H Araki, and Y Oshima
May 1982, Cell,
H Matsuzaki, and H Araki, and Y Oshima
March 1985, Journal of molecular biology,
H Matsuzaki, and H Araki, and Y Oshima
December 2000, Nucleic acids research,
H Matsuzaki, and H Araki, and Y Oshima
January 1984, Cold Spring Harbor symposia on quantitative biology,
H Matsuzaki, and H Araki, and Y Oshima
January 1986, Basic life sciences,
H Matsuzaki, and H Araki, and Y Oshima
January 1984, Cold Spring Harbor symposia on quantitative biology,
H Matsuzaki, and H Araki, and Y Oshima
January 1986, Basic life sciences,
H Matsuzaki, and H Araki, and Y Oshima
April 2013, Biochemical Society transactions,
H Matsuzaki, and H Araki, and Y Oshima
September 1986, The Journal of biological chemistry,
Copied contents to your clipboard!