Relationship between myocardial contractility and the effects of digitalis on ionic exchange. 1977

G A Langer

Therapeutic concentrations of the digitalis glycosides that produce significant positive inotropy cannot be dissociated from certain effects on ionic exchange. These effects produce an increase in cellular Na and an augmentation of Ca influx. An increase of K efflux can be dissociated from the therapeutic action of the glycosides. The increase of Ca influx does not produce an increase of a component of slow inward current that is usually ascribed to transmembranous movement of Ca with voltage clamp technique. It is proposed that the primary action of the glycosides is to produce an elevation of intracellular Na--secondary to inhibition of the cellular Na-K pump. The increase of cellular Na results in augmentation of the activity of an electroneutral Na-Ca carrier system with stimulation of outward Na and inward Ca movement. The enhanced inward Ca movement is directly responsible for the positive inotropic effect of the drug.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004071 Digitalis Glycosides Glycosides from plants of the genus DIGITALIS. Some of these are useful as cardiotonic and anti-arrhythmia agents. Included also are semi-synthetic derivatives of the naturally occurring glycosides. The term has sometimes been used more broadly to include all CARDIAC GLYCOSIDES, but here is restricted to those related to Digitalis. Glycosides, Digitalis
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012462 Saline Solution, Hypertonic Hypertonic sodium chloride solution. A solution having an osmotic pressure greater than that of physiologic salt solution (0.9 g NaCl in 100 ml purified water). Hypertonic Saline Solution,Hypertonic Solution, Saline,Sodium Chloride Solution, Hypertonic,Hypertonic Saline Solutions,Hypertonic Solutions, Saline,Saline Solutions, Hypertonic,Sodium Chloride Solutions, Hypertonic,Saline Hypertonic Solution,Saline Hypertonic Solutions,Solution, Hypertonic Saline,Solution, Saline Hypertonic,Solutions, Hypertonic Saline,Solutions, Saline Hypertonic

Related Publications

G A Langer
November 1968, The American journal of physiology,
G A Langer
January 1971, Surgical forum,
G A Langer
August 1973, The American journal of physiology,
G A Langer
January 1971, Bollettino della Societa italiana di cardiologia,
G A Langer
August 1966, The American journal of physiology,
G A Langer
January 1973, Research communications in chemical pathology and pharmacology,
Copied contents to your clipboard!