The selective 5-HT1A receptor agonist, NLX-112, exerts anti-dyskinetic effects in MPTP-treated macaques. 2020

R Depoortere, and T H Johnston, and S H Fox, and J M Brotchie, and A Newman-Tancredi
Neurolixis SAS, 81100, Castres, France.

Long-term treatment of Parkinson's disease (PD) with l-DOPA typically leads to development of l-DOPA induced dyskinesia (LID). Amantadine, an NMDA antagonist, attenuates LID, but with limited efficacy and considerable side-effects. NLX-112 (also known as befiradol or F13640), a highly selective and efficacious 5-HT1A receptor agonist, reduced LID when tested in rodent and marmoset models of PD. The effects of NLX-112 (0.03, 0.1 and 0.3 mg/kg PO) on established LID evoked by acute challenge with l-DOPA (27.5 ± 3.8 mg/kg PO) were assessed in MPTP-treated cynomolgus macaques. Amantadine (10 mg/kg PO) was tested as a positive control. Plasma exposure of NLX-112 (0.1 mg/kg PO) was determined. NLX-112 significantly and dose-dependently reduced median LID levels by up to 96% during the first hour post-administration (0.3 mg/kg). Moreover, NLX-112 reduced the duration of 'bad on-time' associated with disabling LID by up to 48% (0.3 mg/kg). In contrast, NLX-112 had negligible impact on the anti-parkinsonian benefit of l-DOPA. NLX-112 exposure peaked at ~50 ng/ml at 30 min post-administration but decreased to ~15 ng/ml at 2h. Amantadine reduced by 42% 'bad on-time' associated with l-DOPA, thereby validating the model. These data show that, in MPTP-lesioned cynomolgus macaques, NLX-112 exerts robust anti-dyskinetic effects, without reducing the anti-parkinsonian benefit of l-DOPA. These observations complement previous findings and suggest that selective and high efficacy activation of 5-HT1A receptors by NLX-112 may constitute a promising approach to combat LID in PD, providing an alternative for patients in whom amantadine is poorly tolerated or without useful effect.

UI MeSH Term Description Entries
D007980 Levodopa The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. L-Dopa,3-Hydroxy-L-tyrosine,Dopaflex,Dopar,L-3,4-Dihydroxyphenylalanine,Larodopa,Levopa,3 Hydroxy L tyrosine,L 3,4 Dihydroxyphenylalanine,L Dopa
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D010880 Piperidines A family of hexahydropyridines.
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004409 Dyskinesia, Drug-Induced Abnormal movements, including HYPERKINESIS; HYPOKINESIA; TREMOR; and DYSTONIA, associated with the use of certain medications or drugs. Muscles of the face, trunk, neck, and extremities are most commonly affected. Tardive dyskinesia refers to abnormal hyperkinetic movements of the muscles of the face, tongue, and neck associated with the use of neuroleptic agents (see ANTIPSYCHOTIC AGENTS). (Adams et al., Principles of Neurology, 6th ed, p1199) Dyskinesia, Medication-Induced,Medication-Induced Dyskinesia,Drug-Induced Dyskinesia,Drug-Induced Dyskinesias,Dyskinesia, Drug Induced,Dyskinesia, Medication Induced,Dyskinesias, Drug-Induced,Dyskinesias, Medication-Induced,Medication Induced Dyskinesia,Medication-Induced Dyskinesias
D005260 Female Females
D000547 Amantadine An antiviral that is used in the prophylactic or symptomatic treatment of influenza A. It is also used as an antiparkinsonian agent, to treat extrapyramidal reactions, and for postherpetic neuralgia. The mechanisms of its effects in movement disorders are not well understood but probably reflect an increase in synthesis and release of dopamine, with perhaps some inhibition of dopamine uptake. 1-Aminoadamantane,Adamantylamine,Adekin,Aman,Amanta,Amanta-HCI-AZU,Amanta-Sulfate-AZU,Amantadin AL,Amantadin AZU,Amantadin Stada,Amantadin-neuraxpharm,Amantadin-ratiopharm,Amantadina Juventus,Amantadina Llorente,Amantadine Hydrochloride,Amantadine Sulfate,Amixx,Cerebramed,Endantadine,Gen-Amantadine,Infecto-Flu,Infex,Mantadix,Midantan,PMS-Amantadine,Symadine,Symmetrel,Viregyt,Wiregyt,tregor,1 Aminoadamantane,AL, Amantadin,AZU, Amantadin,Amanta HCI AZU,Amanta Sulfate AZU,AmantaHCIAZU,AmantaSulfateAZU,Amantadin neuraxpharm,Amantadin ratiopharm,Amantadinneuraxpharm,Amantadinratiopharm,Gen Amantadine,GenAmantadine,Hydrochloride, Amantadine,Infecto Flu,InfectoFlu,Juventus, Amantadina,Llorente, Amantadina,PMS Amantadine,PMSAmantadine,Stada, Amantadin,Sulfate, Amantadine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015259 Dopamine Agents Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons. Dopamine Drugs,Dopamine Effect,Dopamine Effects,Dopaminergic Agents,Dopaminergic Drugs,Dopaminergic Effect,Dopaminergic Effects,Agents, Dopamine,Agents, Dopaminergic,Drugs, Dopamine,Drugs, Dopaminergic,Effect, Dopamine,Effect, Dopaminergic,Effects, Dopamine,Effects, Dopaminergic

Related Publications

R Depoortere, and T H Johnston, and S H Fox, and J M Brotchie, and A Newman-Tancredi
May 2020, Neuropharmacology,
R Depoortere, and T H Johnston, and S H Fox, and J M Brotchie, and A Newman-Tancredi
February 2022, Naunyn-Schmiedeberg's archives of pharmacology,
R Depoortere, and T H Johnston, and S H Fox, and J M Brotchie, and A Newman-Tancredi
June 2022, Neuropharmacology,
R Depoortere, and T H Johnston, and S H Fox, and J M Brotchie, and A Newman-Tancredi
October 2017, Neuropharmacology,
R Depoortere, and T H Johnston, and S H Fox, and J M Brotchie, and A Newman-Tancredi
February 2018, Pharmacology, biochemistry, and behavior,
R Depoortere, and T H Johnston, and S H Fox, and J M Brotchie, and A Newman-Tancredi
September 2022, Neurourology and urodynamics,
R Depoortere, and T H Johnston, and S H Fox, and J M Brotchie, and A Newman-Tancredi
October 2020, Experimental neurology,
R Depoortere, and T H Johnston, and S H Fox, and J M Brotchie, and A Newman-Tancredi
September 2017, The Journal of pharmacy and pharmacology,
R Depoortere, and T H Johnston, and S H Fox, and J M Brotchie, and A Newman-Tancredi
March 2022, Pharmaceuticals (Basel, Switzerland),
Copied contents to your clipboard!