A monoclonal antibody that recognizes a basolateral membrane protein in A6 epithelial cells. 1988

J B Moberly, and D D Fanestil
Department of Medicine, University of California, La Jolla 92093.

The A6 cell line is a model for tight epithelia and studies of epithelial polarity. Monoclonal antibodies (MAbs) were produced by immunization of mice with intact A6 cells and fusion of spleen cells to generate hybridomas. Hybridoma supernatants were screened by ELISA to select MAbs binding to the apical membrane of confluent A6 cells. Localization of MAb binding was examined by indirect immunofluorescence using cross sections of A6 monolayers grown on collagen coated filters. One MAb, designated 13F12, was positive by apical surface ELISA but localized specifically to the basolateral membrane of cross sections of A6 monolayers on filters. Immunofluorescence labeling of confluent A6 cells grown on glass cover slips revealed that MAb 13F12 does not bind to the apical membrane, but binds to basolateral determinants in the regions of domes, where it appears able to penetrate cellular junctions. Subconfluent A6 cells express the antigen all over the cell surface. Cells approaching confluency express the antigen on the apical membrane of some cells but not others, and as the cells reach confluency, the antigen disappears from the apical surface, and the cells become fully polarized. A6 cells at confluency on glass cover slips are equally polarized as cells grown on filters with respect to this antigen. The antigen has been identified by immunoprecipitation as a 22 kDa protein. High concentrations of MAb 13F12 did not inhibit cell plating, indicating that the antigenic site is not directly involved in cell adhesion to the substrate. MAb 13F12 should prove to be a useful tool to study many aspects of epithelial polarity, including the signals involved in sorting of proteins to specific membrane domains.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

J B Moberly, and D D Fanestil
December 1998, Chemical senses,
J B Moberly, and D D Fanestil
January 1982, The Journal of cell biology,
J B Moberly, and D D Fanestil
November 1985, The American journal of pathology,
J B Moberly, and D D Fanestil
October 1991, The Journal of membrane biology,
J B Moberly, and D D Fanestil
February 1992, European journal of cell biology,
J B Moberly, and D D Fanestil
June 1996, Journal of neuropathology and experimental neurology,
J B Moberly, and D D Fanestil
February 1981, The Journal of experimental medicine,
J B Moberly, and D D Fanestil
July 1989, Laboratory investigation; a journal of technical methods and pathology,
J B Moberly, and D D Fanestil
June 2012, Hybridoma (2005),
Copied contents to your clipboard!