Materials aspects of implantable cardiac pacemaker leads. 1988

S D Bruck, and E P Mueller
Biomaterials and Medical Devices Consulting Group, Stephen D. Bruck Associates, Inc., Rockville, MD 20851.

The reliability of the leads of the entire pacemaker system is vital as the risks of failure include: (1) loss of pacing due to the deterioration of the polymeric insulator in the physiological environment; (2) thromboembolism due to inadequate blood compatibility of the insulator; (3) tissue reactions at the electrode/tissue interface; (4) general foreign body rejection phenomena; (5) perforation of the leads; and (6) excessive stress applied by sutures causing abrasion and stress cracking. Although silicone has been used widely, some years ago Pellethane (a segmented polyetherurethane-urea) has been introduced as an alternate lead insulator, chiefly because it can be extruded using additives into smooth and thin tubes. The additives (antioxidants), extrusion aids, and low molecular weight polymer chains (oligomers) together represent up to approximately 8% by weight of leachables, depending on the extraction medium. The in vivo degradation of Pellethane is biologic in nature and is most likely associated with the absorption and premeation of body fluids from the surrounding physiologic environment leading to stress cracking via the formation of microvoids. Thermally and biologically unstable biuret and allophonate groups in this polyurethane, exposure of the polymer to high extrusion temperatures, and stresses created within the polymer also play key roles in the degradation process. In the case of electrodes, some corrosion can occur even with noble metals and ions formed with the involvement of penetrating body fluids which may combine with the urethane and/or urea groups of the polyurethane, leading to its further degradation in vivo. The totality of the situation indicates a need for the development of a standard guideline for the uniform and consistent pre-clinical testing and evaluation of new materials and fabrication processes of implantable pacemaker leads. Such guidelines should take into consideration, among others, the physiological environment, species-differences between test animals and humans, and observe reliable statistical interpretations based on sufficient data.

UI MeSH Term Description Entries
D010138 Pacemaker, Artificial A device designed to stimulate, by electric impulses, contraction of the heart muscles. It may be temporary (external) or permanent (internal or internal-external). Cardiac Pacemaker, Artificial,Artificial Cardiac Pacemaker,Artificial Cardiac Pacemakers,Artificial Pacemaker,Artificial Pacemakers,Cardiac Pacemakers, Artificial,Pacemaker, Artificial Cardiac,Pacemakers, Artificial,Pacemakers, Artificial Cardiac
D011140 Polyurethanes A group of thermoplastic or thermosetting polymers containing polyisocyanate. They are used as ELASTOMERS, as coatings, as fibers and as foams. Polyisocyanates,Ostamer,Pellethane,Spandex,Ostamers,Pellethanes,Polyisocyanate,Polyurethane,Spandices
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D004567 Electrodes, Implanted Surgically placed electric conductors through which ELECTRIC STIMULATION is delivered to or electrical activity is recorded from a specific point inside the body. Implantable Electrodes,Implantable Stimulation Electrodes,Implanted Electrodes,Implanted Stimulation Electrodes,Electrode, Implantable,Electrode, Implantable Stimulation,Electrode, Implanted,Electrode, Implanted Stimulation,Electrodes, Implantable,Electrodes, Implantable Stimulation,Electrodes, Implanted Stimulation,Implantable Electrode,Implantable Stimulation Electrode,Implanted Electrode,Implanted Stimulation Electrode,Stimulation Electrode, Implantable,Stimulation Electrode, Implanted,Stimulation Electrodes, Implantable,Stimulation Electrodes, Implanted
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S D Bruck, and E P Mueller
December 1969, Japanese circulation journal,
S D Bruck, and E P Mueller
September 1980, Pacing and clinical electrophysiology : PACE,
S D Bruck, and E P Mueller
December 1990, Pacing and clinical electrophysiology : PACE,
S D Bruck, and E P Mueller
October 1982, Biomaterials,
S D Bruck, and E P Mueller
March 1964, Canadian Medical Association journal,
S D Bruck, and E P Mueller
March 1964, Journal of the American Geriatrics Society,
S D Bruck, and E P Mueller
January 1964, Canadian Medical Association journal,
S D Bruck, and E P Mueller
January 2007, Revista de la Facultad de Ciencias Medicas (Cordoba, Argentina),
S D Bruck, and E P Mueller
January 1999, Current opinion in cardiology,
S D Bruck, and E P Mueller
July 1962, Journal - Newark Beth Israel Hospital,
Copied contents to your clipboard!