HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. 2020

Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut.

Ring canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton, but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC-a component specific to female germline ring canals-is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ectopic actin structures in somatic follicle cells. Finally, we present findings that indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility-a result that is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D009866 Oogenesis The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM). Oogeneses
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D002148 Calmodulin-Binding Proteins Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases. Caldesmon,Calspectin,CaM-BP(80),Caldesmon (77),Calmodulin Binding Proteins,Proteins, Calmodulin-Binding
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D048749 Cytokinesis The process by which the CYTOPLASM of a cell is divided. Cytoplasmic Division,Cytokineses,Cytoplasmic Divisions,Division, Cytoplasmic,Divisions, Cytoplasmic
D029721 Drosophila Proteins Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development. Drosophila melanogaster Proteins,Proteins, Drosophila,Proteins, Drosophila melanogaster,melanogaster Proteins, Drosophila

Related Publications

Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
September 1999, The Journal of cell biology,
Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
October 2016, Molecular biology of the cell,
Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
January 2004, Mechanisms of development,
Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
August 1998, Development (Cambridge, England),
Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
October 2002, Nature cell biology,
Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
April 2006, Journal of structural biology,
Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
April 2009, Autophagy,
Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
June 2021, Insect biochemistry and molecular biology,
Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
January 2012, Genetics research international,
Julianne A Gerdes, and Katelynn M Mannix, and Andrew M Hudson, and Lynn Cooley
January 2015, PloS one,
Copied contents to your clipboard!