Insulin action and insulin secretion in identical twins with MODY. Evidence for defects in both insulin action and secretion. 1988

H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
Medical Department III, Aarhus Amtssygehus, Denmark.

To evaluate the pathogenetic mechanisms responsible for development of diabetes in the genetically inherited disease maturity-onset diabetes of the young (MODY), we have investigated a pair of identical twins (19 yr old) from a MODY family. One twin had nondiabetic fasting plasma glucose values but impaired glucose tolerance (IGT), whereas the other suffered from frank diabetes (fasting plasma glucose 12.5 mM). Differences in insulin secretion pattern and/or insulin action between the twins is supposed to be responsible for development of hyperglycemia in MODY. On the other hand, identical defects in insulin secretion and action in the twins may point to the primary genetic defect in MODY. Therefore, our aim was to investigate insulin secretion and insulin action in the twins to find these differences and similarities. We found that fasting plasma insulin and C-peptide values were slightly increased in the twins, whereas the responses of insulin and C-peptide to oral glucose tolerance tests (OGTT) and meals were similar in the twins and within normal range. The insulin responses to OGTT were, however, lower than expected from the glucose values, indicating a beta-cell defect. Despite elevated plasma insulin levels, basal hepatic glucose output (HGO) was normal in the IGT twin but increased by 75% in the diabetic twin. The maximally inhibitory effect of insulin on HGO, when estimated at euglycemia, was normal in the IGT twin but reduced by 60% in the diabetic twin. Furthermore, the maximal insulin-mediated glucose uptake in peripheral tissues was reduced by 40% in the diabetic twin.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D004200 Diseases in Twins Disorders affecting TWINS, one or both, at any age. Diseases in Twin,Twin, Diseases in,Twins, Diseases in,in Twin, Diseases,in Twins, Diseases
D005260 Female Females

Related Publications

H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
May 1978, Ear, nose, & throat journal,
H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
March 1986, The American journal of physiology,
H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
June 2005, Diabetes care,
H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
November 1972, The Practitioner,
H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
September 1963, Lancet (London, England),
H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
November 1981, Endocrinology,
H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
September 1993, Arthritis and rheumatism,
H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
June 2016, Turk Kardiyoloji Dernegi arsivi : Turk Kardiyoloji Derneginin yayin organidir,
H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
June 1983, British medical journal (Clinical research ed.),
H Beck-Nielsen, and O H Nielsen, and O Pedersen, and J Bak, and O Faber, and O Schmitz
November 1992, Journal of the American Academy of Dermatology,
Copied contents to your clipboard!